Benutzer:Buss-Haskert/Mathe Q1 Integralrechnung
Link zu vorhandenen Lernpfaden der Seite ZUM Unterrichten:
Einführung in die Integralrechnung
Rekonstruktion einer Größe
Die Fläche unter den Kurven gibt jeweils die zurückgelegte Strecke s an. Berechne also die Flächen.
a) Zerlege die Flächen in 3 Teilflächen: A1 = ADreick; A2 = ARechteck und A3 = ADreieck
A =
=
= 5 (m)
Alternativ kannst du den Flächeninhalt auch mit der Formel für das Trapez bestimmen:
ATrapez = = = 5 (m).
Lösung zur Testaufgabe 1:
a) Zerlege die Fläche in Teilflächen (waagerechte Linie ab 2), zu denen du einen Flächeninhaltsformel kennst, hier also ein Trapez und ein Dreieck.
A = ATrapez + ADreieck
= +
= 14 + 12 = 26 (m³)
Da zu Beginn schon 10 m³ im Tank waren, sind es nun insgesamt 36 m².
b) Pro Minute fließen 3 m³ aus dem Tank, bis 36 m³ herausgeflossen sind dauert es also:
36 : 3 = 12 (min).
Untersumme und Obersumme; Bestimmtes Integral
Integralschreibweise:
1. Bestimme die Integrationsgrenzen: Von wo bis wo soll die Fläche berechnet werden?
2. Bestimme den Integrand: Von welcher Funktion soll die Flächen berechnet werden?
3. Bestimme das Differenzial
a) A =
b) Um die Integrationsgrenzen zu bestimmen, berechne zunächst die Nullstellen der Funktion g(x).
g(x) ist eine nach unten geöffnete Normalparabel, die um 3 Einheiten entlang der y-Achse verschoben wurde, die Funktionsgleichung lautet also
g(x) = -x² + 3
Nullstellen: g(x) = 0
-x² + 3 = 0 |+x²
3 = x² |
- = x1; =x2
A =
c) A =
S. 55, Nr. 4 https://www.geogebra.org/classic/nnrgeh2m

Interpretation: Die Pflanze ist nach 100 Tagen auf eine Größe von ca. 2,07 m gewachsen.
S. 55, Nr. 5a https://www.geogebra.org/m/rqhdk5nq

S. 55, Nr. 5b https://www.geogebra.org/m/awxfwjap

S. 55, Nr. 5c https://www.geogebra.org/m/rqmv8vhy

S. 56, Nr. 11a https://www.geogebra.org/m/tracazj8

S. 56, Nr. 11b https://www.geogebra.org/m/nmbnu9ms

S. 56, Nr. 11c https://www.geogebra.org/m/htxsyfwc

S. 56, Nr. 11d https://www.geogebra.org/m/xaemqdvt

S. 57, Nr. 21a https://www.geogebra.org/m/rtmspkuk

S. 57, Nr. 21b https://www.geogebra.org/m/xyheyy73

S. 57, Nr. 21c https://www.geogebra.org/m/jjs83ka6

Hauptsatz der Differenzial und Integralrechnung
Stammfunktion skizzieren
Tipp zu S. 60, Nr. 4a https://www.geogebra.org/m/yxmrxmqh

Tipp zu S. 60, Nr. 4b https://www.geogebra.org/m/zugc2bjm

1 F(x) = x³
F'(x) = 3·x² = x³ , also Buchstabe E
f(x) = 6x²
F(x) = 2x³ ist Stammfunktion von f(x), denn
F'(x) = 3·2x² = 6x² = f(x).
Hauptsatz der Integralrechung:
= F(2) - F(1) = 2·2³ - 2·1³ = 16 - 2 = 14 (Flächeneinheiten).
a) f(x) = 3x²; F(x) =
F'(x) = a·xa-1; a=3
b) f(x) = 2x; F(x) = x² - a
F'(x) = 2·x also darf a alle Werte annehmen, a ∈ ℝ
Tipp zu S. 60, Nr. 4a https://www.geogebra.org/m/yxmrxmqh

Tipp zu S. 60, Nr. 4b https://www.geogebra.org/m/zugc2bjm

Idee: Da F'(x) = f(X) gilt, beschreibt f(x) die jeweilige Steigung von F(x) an der Stelle x, also das Monotonieverhalten von F(x).
a) Der Graph von f schneidet die x-Achse zweimal. Das Monotonieverhalten von F(x) ändert sich also zweimal. An den Stellen, an denen F'(x) = f(x) das Vorzeichen wechselt.
F hat dort also zwei Extremstellen.
Bei x=0 wechselt F' vom negativen Bereich in den positiven, F fällt also zunächst und steigt dann, dort hat F also einen Tiefpunkt.
Bei x=5 wechselt F' vom positiven in den negativen Bereich, F steigt also zunächst und fällt dann, dort hat F also einen Hochpunkt.
b) Zerlege die Fläche unter dem Graphen in zwei Dreiecke (von x=0 bis x=1 und von x=4 bis x=5), in ein Rechteck von x=1 bis x=4 mit der Höhe 1 und ein Trapez von x=1 bis x=4 mit der Höhe 0,5.
A = ·1·1 + 3·1 + ·(3+1)·0,5 + ·1·1
A = 0,5 + 3 + 1 + 0,5
A = 5 (FE)
Tipp zu S. 61, Nr. 6 I https://www.geogebra.org/m/c9anmg5a

Tipp zu S. 61, Nr. 6 II https://www.geogebra.org/m/fdqkpzuy

Tipp zu S. 61, Nr. 9 https://www.geogebra.org/m/kymjwc79

Stammfunktion bilden
S. 65, Nr. 1
a) f(x) = x; Potenzregel: F1(x) = ; F2(x) = + 3 (+c, irgendeine Zahl)
b) f(x) = 2x; Faktorregel (2) und Potenzregel (x): F1(x) = 2· = x²; F2(x) = 2· = x² + 2
c) f(x) = x²; Potenzregel: F1(x) = ; F2(x) = +6
d) f(x) = 3x²; Faktorregel (3) und Potenzregel (x²): F(x) = 3· = x³
e) Potenzregel
f) Potenzregel
g) f(x) = 7; f(x) = 7; also F1(x) = 7· = 7x; ...
h) f(x) = 0; F(x) = 3 (allgemein c, irgendeine Zahl)
i) f(X) = x² + x; Summenregel und Potenzregel: F1(x) = +
j) Summenregel und Potenzregel
k) f(x) = 0,5x + 1; Summenregel, Faktorregel und Potenzregel: F1(x) = 0,5· + 1x; f2(x) = ...
S. 65, Nr. 3 (vergleiche mit Beispiel 2, S. 64)
a) f(x) = 5
Eine Stammfunktion von f(x) ist F(x) = 5x
A = = =
= F(20) - F(10) = 5·20 - 5·10 = 100 - 50 = 50 FE (Flächeneinheiten)
b) f(x) = 2x
Eine Stammfunktion von f(x) ist F(x) = 2· = x²
A = = =
= F(3) - F(0) = 3² - 0² = 9 FE (Flächeneinheiten)
S. 65, Nr. 4 (vergleiche mit Beispiel 2, S. 64)
a) h(x) = -x²+1
Eine Stammfunktion von h(x) ist H(x) = - + x
=
=
= H(1) - H(-1)
= - + 1 - (- + (-1))
= - (-)
= +
= FE (Flächeneinheiten)
b) k(x) = - 3
Eine Stammfunktion von k(x) ist K(x) = - 3x = - 3x
=
=
= K(2) - K(-2)
= - 3·2 - ( - 3·(-2))
= 2 - 6 - (-2 - (-6))
= -4 - 4
= -8 FE (Flächeneinheiten)
c) f(x) =
Eine Stammfunktion von f(x) ist F(x) =
=
=
= F(1,5) - F(-1,5)
= ) =
= )
S. 65, Nr. 5
a) f(x) = x²
Eine Stammfunktion von f(x) ist F(x) =
=
=
= F(5) - F(-2)
= - ()
= - (-)
= +
= = 44 FE (Flächeneinheiten)
b) f(x) = -
Eine Stammfunktion von f(x) ist F(x) = - = -
...
