Benutzer:Buss-Haskert/Lineare Gleichungssysteme

Aus ZUM Projektwiki
Schullogo HLR.jpg



Lernpfad Lineare Gleichungssysteme - Alles rund um Freizeit

In diesem Lernpfad lernst du, was lineare Gleichungssysteme (LGS) sind und welche Verfahren zur Lösung es gibt. Zu den verschiedenen Lösungsverfahren wirst du selbst Videos erstellen. Zudem wirst du Anwendungssituationen zu linearen Gleichungssystemen kennenlernen.

Die Übungen im Buch beziehen sich auf das Schülerbuch "Schnittpunkt Mathematik 9 - Differenzierende Ausgabe" des Klett-Verlages.


0) Vorwissen

Bearbeite die Aufgaben in der Tabelle: (Buch: Schnittpunkt Mathematik - Differenzierende Ausgabe 9, Klett)


Ich kann ... Buch S. 8 Übungen online
- mit Fachbegriffen umgehen. Nr. 1


-Terme zu mathematische Texten, geometrischen Situationen

und Sachsituationen aufstellen.

Nr. 2


- Werte von Termen berechnen. Nr. 3


-Terme (mit Klammern) vereinfachen Nr. 4, 5


-Lineare Gleichungen lösen. Nr. 6


- eine Wertetabelle zu einer linearen Funktion aufstellen Nr. 7


-Gleichung und Graphen linearer Funktionen einander zuordnen. S. 180 Nr. 3,4,5



Vergleiche deine Lösungen mit den Lösungen hinten im Buch!



1) Lineare Gleichungen mit zwei Variablen

Pommes und Cola 1.png


Frage Was ist hier neu..png



Löse durch Probieren
Die obige Situation lässt sich durch die Gleichung x + 2y = 5 beschreiben. Finde durch Probieren verschiedene Zahlenpaare (x;y), die diese Gleichung erfüllen. Wie viel könnten eine Tüte Pommes und eine Dose Cola kosten, damit die Gleichung passt? Notiere deine Werte in einer Tabelle.



Schaubild/Graph
Trage deine Lösungen in ein Koordinatenkreuz ein. Fällt dir etwas auf?


GeoGebra-Applet zur Einsteigsaufgabe: https://www.geogebra.org/m/wwaferxp

von C. Buß-Haskert


Lineare Gleichungen mit zwei Variablen

Die Gleichung für die Situation oben lautet x + 2y = 5.

Alle Zahlenpaare (x;y), die diese lineare Gleichung erfüllen, sind Lösungen der Gleichung.
Diese Lösungen stellen Punkte (xy) im Koordinatensystem dar und liegen auf der Geraden mit der Funktionsgleichung
y=mx+b.


Übung 1 Text - Gleichung (online)

Ordne im Quiz und in der nachfolgenden LearningApp dem Text eine passende Gleichung mit zwei Variablen und eine mögliche Lösung zu.


Addiert man zu einer Zahl 6, so erhält man das Dreifache der anderen Zahl.
Addiert man zur zweiten Zahl 6, so erhält man das Vierfache der ersten Zahl.
Die Summe zweier Zahlen ist 52.
Das Doppelte der ersten ist gleich dem Dreifachen der zweiten Zahl.
Ein gleichschenkliges Dreieck hat einen Umfang von 41 cm.
In einem gleichschenkligen Dreieck ist die Basis (Grundseite) nur ein Drittel so lang wie die Schenkel.
Der Umfang eines Rechtecks ist 80 cm.
Der Flächeninhalt eines Rechtecks beträgt 64cm².
Andreas hat 6 CDs mehr als Karin.

x + y = 522x + y = 41y = xy + 6 = 4∙xx + 6 = 3∙yx∙y = 642∙x = 3∙yy = x - 62x + 2y = 80



Übung 2 Text - Gleichung (Buch)

Löse die Aufgaben aus dem Buch. Gib zunächst die Bedeutung der Variablen an und stelle anschließend die Gleichung auf.

  • S. 11, Nr. 1
  • S. 11, Nr. 2
  • S. 11, Nr. 9
  • Sprinteraufgabe: S. 11, Nr. 10


Übung 3 Punktprobe (online)
Bestimme die fehlende Zahl des Wertepaares bzw. prüfe, ob die angegebenen Wertepaare Lösungen der linearen Gleichung sind.




Übung 4 Punktprobe (Buch)

Löse die Aufgaben aus dem Buch. Notiere deine Rechnungen ausführlich im Heft (Schreibweisen beachten!).

  • S. 11, Nr. 3


Übung 5 Funktionsgleichung und Wertetabelle
Löse die Gleichung nach y auf und schreibe sie in der Form y=mx+b. Zeichne die zugehörige Gerade der Funktion f(x).




Übung 6 Funktionsgleichung und Wertetabelle

Löse die Aufgabe aus dem Buch. Notiere deine Rechnungen ausführlich im Heft (Schreibweisen beachten!).

  • S. 11, Nr. 5
  • S. 11, Nr. 7 (Prüfe rechnerisch und zeichnerisch!)



2) Lineare Gleichungssysteme

Pommes und Cola.pngFrage Was ist hier neu..png

Im Imbiss
Was ist hier gesucht? Übertrage die Aufgabe in dein Heft. Löse allein und vergleiche anschließend mit deinem Partner


Lineare Gleichungssysteme (LGS)
Ein lineares Gleichungssystem (LGS) besteht aus zwei linearen Gleichungen. Diese haben jeweils zwei Variablen. Das Wertepaar (x;y), das beide Gleichungen erfüllt, ist die Lösung des linearen Gleichungssystems.
Diese Lösung kannst du z.B. durch Probieren erhalten (Wertetabelle).