Julius-Echter-Gymnasium/Mathematik/Netze

Aus ZUM Projektwiki
< Julius-Echter-Gymnasium‎ | Mathematik
Version vom 23. Februar 2020, 16:27 Uhr von Myriam Lang (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
Netz und Oberflächeninhalt

Wenn man ein Schrägbild "auseinander klappt", dann entsteht ein sogenanntes Netz.
Anhand des Netzes kann man den Oberflächeninhalt eines Körpers viel leichter berechnen, weil hier alle Teilflächen unverzerrt dargestellt sind.

Um den Oberflächeninhalt des Körpers zu berechnen, musst du nur den Flächeninhalt aller Teilflächen addieren.



Schrägbild und Netz einer Pyramide
Oberflächeninhalt berechnen:

Man berechnet zum Beispiel den Oberflächeninhalt einer vierseitigen Pyramide, die ein Quadrat als Grundfläche besitzt, indem man:

1. die Grundfläche mit Hilfe der Flächeninhaltsformel für Quadrate berechnet,

2. den Flächeninhalt eines der vier Dreiecke des Mantels berechnet,

3. den Flächeninhalt des Dreiecks mit 4 multipliziert (dies ist dann die Mantelfläche),

4. die Grundfläche zur Mantelfläche addiert.





Ordne die Netze ihren Figurenbezeichnungen zu:


Aufgabe 1


Teste hier, ob du die richtige Vorgehensweise kennst:


Aufgabe 2


Übe die Berechnung des Oberflächeninhalts von Würfeln:


Aufgabe 3


Berechne den Oberflächeninhalt von Quadern:


Aufgabe 4


Berechne die Fläche eines Netzes:


Aufgabe 5