Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(155 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Fortsetzung|vorher=zurück zur Kapitelauswahl|vorherlink=Digitale_Werkzeuge_in_der_Schule/Pyramiden_entdecken}}
[[Datei:Bauarbeiter.jpg|rahmenlos]]
Dieser Lernpfad befindet sich aktuell im Aufbau.
{{Box
{{Box
|1=Info
|1=Info
Zeile 17: Zeile 11:
Viel Erfolg!
Viel Erfolg!
|3=Kurzinfo}}
|3=Kurzinfo}}
==Wiederholung(Optional)==
Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Quadraten und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, trage die Formeln direkt auf deinem Arbeitsblatt ein und starte bei "Oberflächeninhalte berechnen". Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben.


===Quadratischen Flächeninhalt berechnen===
==Wiederholung==
{{Box|Aufgabe 1: Flächeninhalt vom Quadrat|Berechne den Flächeninhalt des folgenden Quadrates: {{LearningApp|width=100%|height=500px|app=pzetz093j22}}
{{Box|1=Info|2=Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, kannst du direkt zu Aufgabe 5 gehen. Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1, 2, 3 und 4).|3=Kurzinfo}}
 
===Rechteckigen Flächeninhalt berechnen===
{{Box|Aufgabe 1: Flächeninhalt vom Rechteck|Berechne den Flächeninhalt des folgenden Rechtecks (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pay5n3goj22}}


{{Lösung versteckt|1=Die Formel zur Berechnung eines quadratischen Flächeninhalts lautet: <math>A=a \cdot a</math>|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Zur Berechnung des Flächeninhaltes benötigst du nicht die Diagonale.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1=Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 4 \text{ cm} =16 \text{ cm²}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=<math>A=4 \text{ cm} \cdot 3 \text{ cm} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}
<div style="background:#FFFACD; border:ridge #FFEC8B; padding:10px">Gib im zweiten Kästchen die richtige Einheit an.</div>


{{Box|1=Info|2=Übertrage die Formel zur Berechnung eines quadratischen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").|3=Kurzinfo}}
===Dreieckigen Flächeninhalt berechnen===
{{Box|Aufgabe 2: Flächeninhalt vom Dreieck|Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben): {{LearningApp|width=100%|height=500px|app=pep157pij22}}


===Dreieckigen Flächeninhalt berechnen===
{{Lösung versteckt|1=Du benötigst zur Berechnung eines dreieckigen Flächeninhaltes die Höhe und die Grundseite. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Box|Aufgabe 2: Flächeninhalt vom Dreieck|Berechne den Flächeninhalt des folgenden Dreiecks: {{LearningApp|width=100%|height=500px|app=pep157pij22}}


{{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot 6 \text{ cm}}{2} =12 \text{ cm}^{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}


{{Lösung versteckt|1=<math>A= \tfrac{4 \text{ cm} \cdot  6 \text{ cm}}{2} =12 \text{ cm²}</math>|2=Lösung anzeigen|3=Lösung verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}
{{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}}
<div style="background:#FFFACD; border:ridge #FFEC8B; padding:10px">Gib auch hier im zweiten Kästchen die richtige Einheit an.</div>


{{Box|1=Info|2=Übertrage die Formel zur Berechnung eines dreieckigen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").|3=Kurzinfo}}
{{Box | Aufgabe 3: Rechteckige Flächeninhalte|
Berechne den Flächeninhalt folgender Rechtecke.


Falls du zu den beiden Themen weitere Aufgaben zur Wiederholung benötigst, klicke hier
'''a)''' <math>a=7\text{ m}, b=5\text{ m}</math>
{{Box | Aufgabe 3: Quadratische Flächeninhalte berechnen |
'''a)''' <math>a=7\text{ m}</math>


'''b)''' <math>a=9\text{ dm}</math>
{{Lösung versteckt|1=<math>A=7 \text{ m} \cdot 5 \text{ m} =35 \text{ m}^{2}</math>|2=Lösung a) anzeigen|3=Lösung a) verbergen}}


'''c)''' <math>a=3,5\text{ cm}</math>
'''b)''' <math>a=90\text{ dm}, b=2\text{ m}</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=Berechnung in m: <math>A=9 \text{ m} \cdot 2 \text{ m} =18 \text{ m}^{2}</math>  
'''a)''' <math>A=49\text{ }</math>


'''b)''' <math>A=81\text{ dm²}</math>
oder


'''c)''' <math>A=12,25\text{ cm²}</math>
Berechnung in dm: <math>A=90 \text{ dm} \cdot 20 \text{ dm} =1800\text{ dm}^{2}</math>|2=Lösung b) anzeigen|3=Lösung b) verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}




{{Box | Aufgabe 4: Dreieckige Flächeninhalte berechnen |
{{Box | Aufgabe 4: Dreieckige Flächeninhalte|
 
Berechne den Flächeninhalt folgender Dreiecke.
'''a)''' <math>g=8\text{ m},  h=3\text{ m}</math>
 
'''b)''' <math>g=12\text{ cm},  h=4\text{ cm}</math>


'''c)''' <math>g=15\text{ dm}, h=12\text{ dm}</math>
'''a)''' <math>g=16\text{ m}, h=7\text{ m}</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=<math>A= \tfrac{16 \text{ m} \cdot 7 \text{ m}}{2} =56 \text{ m}^{2}</math>|2=Lösung a) anzeigen|3=Lösung a) verbergen}}
'''a)''' <math>A=12\text{ }</math>


'''b)''' <math>A=24\text{ cm²}</math>
'''b)''' <math>g=4\text{ m}, h=500\text{ cm}</math>


'''c)''' <math>A=90\text{ dm²}</math>
|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode|Farbe={{Farbe|orange}}}}


{{Lösung versteckt|1=Berechnung in m: <math>A= \tfrac{4 \text{ m} \cdot 5 \text{ m}}{2} =10 \text{ m}^{2}</math>


{{Box | Aufgabe 5: Dreieckige Flächeninhalte berechnen Teil 2|
oder


'''a)''' <math>g=9\text{ m},  h=3\text{ dm}</math>
Berechnung in dm: <math> A=\tfrac{40 \text{ dm} \cdot 50 \text{ dm}}{2}=1000\text{ dm}^{2}</math>


'''b)''' <math>g=10\text{ cm},  h=0,6\text{ m}</math>
oder


'''c)''' <math>g=3\text{ m},  h=800\text{ cm}</math>
Berechnung in cm: <math>A=\tfrac{400 \text{ cm} \cdot 500 \text{ cm}}{2}=100000\text{ cm}^{2}</math>|2=Lösung b) anzeigen|3=Lösung b) verbergen}}


{{Lösung versteckt|1=
| Arbeitsmethode|Farbe={{Farbe|orange}}}}
'''a)''' <math>A=135\text{ dm²}</math>


'''b)''' <math>A=300\text{ cm² oder }A=30\text{ dm² }</math>
{{Box|Aufgabe 5: Formeln notieren|Trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein.


'''c)''' <math>A=12\text{ m²}</math>
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''
|2=Lösung anzeigen|3=Lösung verbergen}}


| Arbeitsmethode|Farbe=#CD2990}}
{{Lösung versteckt|
Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet: <math>A=a \cdot b</math>


Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
| Arbeitsmethode |Farbe={{Farbe|orange}} }}


==Oberflächeninhalte berechnen==
==Oberflächeninhalte berechnen==


===Pyramiden im Alltag===
{{Box | 1=Aufgabe 6: Materialien berechnen |
 
2='''a)''' Lies dir eine der folgenden Situationsbeschreibungen durch.
Lies dir eine der folgenden Kurzgeschichten durch und löse anschließend den nachstehenden Arbeitsauftrag.


<div class="grid">
<div class="grid">
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Louvre Museum (228021559).jpeg|500px|rahmenlos|Louvre_Museum_(228021559)]]
[[File:Louvre Museum (228021559).jpeg|500px|rahmenlos|Louvre_Museum_(228021559)]]
Zeile 113: Zeile 97:
|2=Louvre|3=Einklappen}}
|2=Louvre|3=Einklappen}}
</div>
</div>
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Kheops-Pyramid.jpg|500px|rahmenlos|Kheops-Pyramid|alt=Kheops-Pyramid.jpg]]
[[File:Kheops-Pyramid.jpg|500px|rahmenlos|Kheops-Pyramid|alt=Kheops-Pyramid.jpg]]
Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Die höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend '''Steine''' gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.
Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Diese höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend '''Steine''' gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.
|2=Pyramiden|3=Einklappen}}
|2=Cheops-Pyramide|3=Einklappen}}
</div>
</div>
<div class="width-1-3">
<div class="width-1-3">
{{Lösung versteckt|1=
{{Lösung versteckt|1=
[[File:Münster, St.-Paulus-Dom -- 2019 -- 3536.jpg|500px|rahmenlos|Münster, St.-Paulus-Dom -- 2019 -- 3536]]
[[File:Münster, St.-Paulus-Dom -- 2019 -- 3536.jpg|500px|rahmenlos|Münster, St.-Paulus-Dom -- 2019 -- 3536]]
Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmspitzen wieder mit neuen '''Dachziegeln''' belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmdächer wieder mit neuen '''Dachziegeln''' belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
|2=Kirchturm|3=Einklappen}}
|2=Kirchturm|3=Einklappen}}
</div> 
</div> 
</div>
'''b)''' Überlege dir bei einer der Situationen, wie man das Problem mathematisch lösen könnte. Beschreibe dein Vorgehen auf einem Zettel in Stichpunkten. Hier sind keine Rechnungen erforderlich und du brauchst auch nicht zählen.
{{Lösung versteckt|1=
Die Gebäude sind allesamt Pyramiden und haben vier '''gleichgroße, dreieckige''' Seitenflächen. Was benötigst du zum Berechnen einer solchen Seitenfläche? Muss die Grundfläche bei der Materialberechnung berücksichtigt werden?
|2=Tipp|3=Tipp verbergen}}
{{Lösung versteckt|1=
Da die Pyramiden auf einem Untergrund stehen, muss die Grundfläche nicht berechnet werden.
Da eine Seitenfläche '''dreieckig''' ist, kann man die Formel zur Berechnung eines Dreiecks benutzen:


</div>  
<math> A = \frac{g \cdot h_g}{2} </math>


{{Box | Aufgabe 6: Materialien berechnen |
Da die Seitenflächen '''gleichgroß''' sind, braucht man nur den Materialverbrauch für eine Seitenfläche zu berechnen und vervierfacht diesen.
Überlege dir bei einer der Geschichten, wie man das Problem mathematisch lösen könnte. Schreibe deine Überlegungen auf und stell dir dabei vor, du müsstest deinen Arbeitgeber von deinen Überlegungen überzeugen.


Kannst du dein Vorgehen auch verallgemeinern und auf die anderen Probleme anwenden? Falls dir dies schwer fällt, schau dir genau den nächsten Abschnitt an!
<math> 4 \cdot A = 4 \cdot \frac{g \cdot h_g}{2} = 2 \cdot g \cdot h_g </math>
| Arbeitsmethode|Farbe={{Farbe|orange}}}}


Man benötigt also nur die Maße der Grundseite und der Höhe des Dreiecks, um den Flächeninhalt einer Seitenfläche zu bestimmen. Wenn man nun den Flächeninhalt kennt, den ein Materialstück benötigt, so kann man durch Teilen den Materialverbrauch für eine Seitenfläche berechnen.
|2=Lösung|3=Lösung verbergen}}
| 3=Arbeitsmethode|Farbe={{Farbe|orange}}}}


===Formel aufstellen===
[[Datei:Pyramide Schrägbild.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
[[Datei:Pyramide Schrägbild.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]


[[Datei:Pyramide Gitternetz.jpg|rahmenlos|mini|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]
[[Datei:Pyramide Gitternetz.jpg|rahmenlos|mini|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]


Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Gitternetz überführen, indem man die Pyramide 'aufklappt' und die Seitenflächen auf eine Ebene projiziert.  
Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.  


Das so entstandene Gitternetz besteht somit aus einer '''Grundfläche <math>G</math>''' und den dreieckigen Seitenflächen, welche zusammen die sogenannte '''Mantelfläche <math>M</math>''' bilden.  
Das so entstandene Netz besteht somit aus einer '''Grundfläche <math>G</math>''' und den dreieckigen Seitenflächen, welche zusammen die sogenannte '''Mantelfläche <math>M</math>''' bilden.  


Den Flächeninhalt des gesamten Gitternetzes nennt man den '''Oberflächeninhalt <math>O</math>'''. Du kannst dir diese Größe als '''Menge an Verpackung''' vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.
Den Flächeninhalt des gesamten Netzes nennt man den '''Oberflächeninhalt <math>O</math>'''. Du kannst dir diese Größe als '''Menge an Verpackung''' vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.


{{Box | Merksatz: Oberflächeninhalt |  
{{Box | Merksatz: Oberflächeninhalt |  
Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:
Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:


<math>O = M + G</math>.
<math>O = G + M</math>.
 
Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.
  | Merksatz | Farbe={{Farbe|grün|dunkel}}}}
  | Merksatz | Farbe={{Farbe|grün|dunkel}}}}


Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleichgroßen Dreiecken.
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.
 
{{Box | Beispiel: Quadratischen Oberflächeninhalt berechnen |
Betrachte die Pyramide rechts, mit einer Kantenlänge von <math>a = 5\text{ cm}</math> und einer Seitenhöhe von <math>h_a = 6\text{ cm}</math>.
 
[[Datei:Pyramide Schrägbild mit Angaben.jpg|rahmenlos|500px|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]


{{Box | Beispiel: Oberflächeninhalt berechnen |  
[[Datei:Pyramide Gitternetz mit Angaben.jpg|rahmenlos|500px|rechts|Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.]]
Sei wie rechts eine Pyramide gegeben mit einer Kantenlänge von <math>a = 5\text{cm}</math> und einer Seitenhöhe von <math>h_a = 6\text{cm}</math>.


Grundfläche G:
'''Grundfläche <math>G</math>''':


<math>G = a \cdot a</math>
<math>G = a \cdot a</math>
Zeile 163: Zeile 165:
<math>G = 5 \cdot 5 = 25</math>
<math>G = 5 \cdot 5 = 25</math>


<math>G = 25 \text{cm²}</math>.
<math>G = 25 \text{ cm}^2</math>.


Seitenfläche A:
'''Seitenfläche <math>A</math>''':


<math>A = \frac{1}{2} \cdot a\cdot h_a</math>
<math>A = \frac{a\cdot h_a}{2} </math>


<math>A = \frac{1}{2} \cdot 5 \cdot 6 = 15</math>
<math>A = \frac{5 \cdot 6}{2} = 15</math>


<math>A = 15\text{cm²}</math>
<math>A = 15\text{ cm}^2</math>


Mantelfläche M:
'''Mantelfläche <math>M</math>''':


<math>M = 4 \cdot A</math>
<math>M = 4 \cdot A</math>
Zeile 179: Zeile 181:
<math>M = 4 \cdot 15 = 60</math>
<math>M = 4 \cdot 15 = 60</math>


<math>M = 60\text{cm²}</math>.
<math>M = 60\text{ cm}^2</math>.


Oberfläche O:
'''Oberflächeninhalt <math>O</math>''':


<math>O = G + M</math>
<math>O = G + M</math>
Zeile 187: Zeile 189:
<math>O = 25 + 60 = 85</math>
<math>O = 25 + 60 = 85</math>


<math>O = 85\text{cm²}</math>
<math>O = 85\text{ cm}^2</math>
  | Hervorhebung1}}
  | Hervorhebung1}}


Um Aufgabe 6 zu lösen wäre somit ein geeigneter Ansatz, die Mantelfläche der pyramidenförmigen Gebilde zu berechnen. Anstatt die Bestandteile einzeln zu zählen bedarf es demnach nur der Kantenlänge und der Seitenhöhe.
{{Box | Aufgabe 7: Lückentext 'Rechteckige Pyramide' |
{{LearningApp|width=100%|height=1100px|app=pijmuqx6j22}}


{{Box | Aufgabe 7: Oberflächeninhalte verschiedener Pyramiden berechnen |
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe 7 zum Einüben des Verfahrens.'''
| Arbeitsmethode | Farbe={{Farbe|orange}} }}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe 8: Tetraeder? |  
{{Box | Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen |
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''
 
{{Lösung versteckt|1=
 
<div class="grid">
<div class="width-1-4">
'''a)'''
 
'''Grundfläche <math>G</math>''':
 
<math> G = a^2 </math>
 
<math> G = 6^2 = 36 </math>
 
'''Seitenfläche <math>A</math>''':
 
<math> A = \frac{a \cdot h_a}{2} </math>
 
<math> A = \frac{6 \cdot 7}{2} = 21 </math>
 
'''Oberflächeninhalt <math>O</math>''':
 
<math> O = G + 4 \cdot A </math>
 
<math> O = 36 + 4 \cdot 21 = 120 </math>
</div>
<div class="width-1-4">
'''b)'''
 
'''Seitenfläche <math>A_a</math>''':
 
<math> A_a = \frac{a \cdot h_a}{2} </math>
 
<math> A_a = \frac{8 \cdot 6,71}{2} = 26,84 </math>
 
'''Seitenfläche <math>A_b</math>''':
 
<math> A_b = \frac{b \cdot h_b}{2} </math>
 
<math> A_b = \frac{6 \cdot 7,21}{2} = 21,63 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 2 \cdot A_a + 2 \cdot A_b </math>
 
<math> M = 2 \cdot 26,84 + 2 \cdot 21,63</math>
 
<math> M = 96,94 </math>
</div>
<div class="width-1-4">
'''c)'''
 
'''Grundfläche <math>G</math>''':
 
<math> G = a \cdot b </math>
 
<math> G = 6 \cdot 10 = 60 </math>
 
'''Seitenfläche <math>A_a</math>''':
 
<math> A_a = \frac{a \cdot h_a}{2} </math>
 
<math> A_a = \frac{6 \cdot 8,6}{2} = 25,8 </math>
 
'''Seitenfläche <math>A_b</math>''':
 
<math> A_b = \frac{b \cdot h_b}{2} </math>
 
<math> A_b = \frac{10 \cdot 7,62}{2} = 38,1 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 2 \cdot A_a + 2 \cdot A_b </math>
 
<math> M = 2 \cdot 25,8 + 2 \cdot 38,1 </math>
 
<math> M = 127,8 </math>
 
'''Oberflächeninhalt <math>O</math>''':
 
<math> O = G + M </math>
 
<math> O = 60 + 127,8 = 187,8 </math>
</div>
<div class="width-1-4">
'''d)'''
 
'''Seitenfläche <math>A</math>''':
 
<math> A = \frac{a \cdot h_a}{2} </math>
 
<math> A = \frac{2 \cdot 4,72}{2} = 4,72 </math>
 
'''Mantelfläche <math>M</math>''':
 
<math> M = 6 \cdot A </math>
 
<math> M = 6 \cdot 4,72 = 28,32 </math>
</div> 
</div>
|2=Lösungen|3=Lösungen verbergen}}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}
 
{{Box | Aufgabe 9: Tetraeder? |  
Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.
Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.
[[Datei:About icon (The Noun Project).svg|15px|middle]] Du kannst durch Klicken, Ziehen und Loslassen mit der Maus die Pyramide drehen. Außerdem kannst du auch die Zahlen genauso verschieben, um sie besser lesen zu können.


<ggb_applet id="psnmcrma" width="1000" height="718" />
<ggb_applet id="psnmcrma" width="1000" height="718" />
Zeile 203: Zeile 310:
Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:
Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:


<math>O = G + 3 \cdot A = \frac{1}{2} \cdot 6.4 \cdot 3.12 + \frac{1}{2} \cdot 15.4 \cdot 6 = 56,109</math>.
<math>O = G + 3 \cdot A = \frac{1}{2} \cdot 6,4 \cdot 3,12 + 3 \cdot \frac{1}{2} \cdot 6,4 \cdot 6 = 67,584</math>.
 
Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Erkläre, welche Fehler Kevin gemacht hat und korrigiere das Ergebnis!
{{Lösung versteckt|1=
 
Tatsächlich unterscheiden sich bei dieser Pyramide die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden. Außerdem hat Kevin die Höhe der Pyramide als Seitenhöhe aufgefasst. Eine korrekte Lösung könnte so aussehen:
 
'''Grundfläche G:'''
 
<math> G = \frac{1}{2} \cdot g \cdot h_g </math>
 
<math> G = \frac{1}{2} \cdot 6,4 \cdot 3,12 </math>
 
<math> G = 9,984 </math>
 
'''Mantelfläche M:'''
 
<math> M = A_a + A_b + A_c</math>
 
<math> M = \frac{1}{2} \cdot a \cdot h_a + \frac{1}{2} \cdot b \cdot h_b + \frac{1}{2} \cdot c \cdot h_c </math>
 
<math> M = \frac{1}{2} \cdot 6,4 \cdot 6,09 + \frac{1}{2} \cdot 5 \cdot 6,15 + \frac{1}{2} \cdot 4 \cdot 6,23 </math>
 
<math> M = 19,488 + 15,375 + 12,46</math>
 
<math> M = 47,323 </math>
 
'''Oberflächeninhalt O:'''


Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Berechne dazu selbst den Oberflächeninhalt und vergleiche dein Ergebnis!
<math>O = G + M</math>
 
<math>O = 9,984 + 47,323</math>
 
<math>O = 57,307</math>
|2=Lösung|3=Lösung verbergen}}
| Arbeitsmethode | Farbe=#CD2990 }}
 
==Pyramiden schätzen==
 
{{Box
|1=Info
|2=Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.
|3=Kurzinfo}}
 
{{Box|Aufgabe 10: Oberfläche von Pyramiden schätzen|Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!). Am Ende bleiben einige Werte übrig, da es mehr Werte als Bilder gibt.
 
[[Datei:About icon (The Noun Project).svg|15px|middle]] Durch Anklicken der Bilder werden diese größer.
{{LearningApp|width=100%|height=500px|app=pnrcnm2fa22}}
 
{{Lösung versteckt|Sortiere die Größen erstmal grob bevor du sie den Bildern zuordnest.|Tipp|Tipp verbergen}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}
 
{{Box|Aufgabe 11: Karlsruher Pyramide schätzen|[[Datei:Pyramide am Marktplatz, Karlsruhe.JPG|mini|Karlsruher Pyramide]]
Auf dem Bild siehst du die Karlsruher Pyramide, die auf dem Marktplatz in Karlsruhe steht. Berechne den Oberflächeninhalt der Pyramide (inklusive der Grundfläche), indem du zuvor die für die Berechnung notwendigen Größen schätzt.
 
{{Box
|1=Info
|2=Die Grundfläche der Pyramide kann als quadratisch angenommen werden.
|3=Kurzinfo}}
 
{{Lösung versteckt|Nutze die Personen auf dem Bild als Referenzgröße.|Tipp|Tipp verbergen}}


{{Lösung versteckt|
{{Lösung versteckt|
{{Box
|1=Info
|2=In der Lösung werden die exakten Werte genutzt, deine Ergebnisse können also etwas von dieser Lösung abweichen. Die Lösung kann dir aber als Orientierung dienen.
|3=Kurzinfo}}


Tatsächlich unterscheiden sich bei diesem Tetraeder die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden.
Es gilt <math>h_a=7{,}45 \text{ m} </math> und <math>a=6{,}05 \text{ m.} </math>


<math>O = G + M = G + A_a + A_b + A_c = G + \frac{1}{2} \cdot a \cdot h_a + \frac{1}{2} \cdot b \cdot h_b + \frac{1}{2} \cdot c \cdot h_c</math>
Damit gilt dann: 


|Lösung|Lösung verbergen}}
'''Grundfläche G:'''


| Arbeitsmethode | Farbe=#CD2990 }}
<math>G=a^{2}=6{,}05^{2}</math>


===Übungsaufgaben===
<math>G=36{,}6 \text{ m}^{2}</math>
Aufgaben, die einen digitalen Mehrwert haben


Übungsaufgaben mit Schwierigkeitsstufen (Dezimalbrüche, Maßeinheiten, Perspektive, ...) auf Arbeitsblatt
'''Seitenfläche A:'''


//Arbeitsblatt: Sicherung durch "Abschreiben" der Formel
<math>A=\frac{a\cdot h_a}{2}=\frac{6{,}05\cdot 7{,}45}{2} </math>


==Pyramiden schätzen==
<math>A=22{,}54 \text{ m}^{2} </math>
{{Box|Aufgabe 9: Oberfläche von Pyramiden schätzen|Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!): {{LearningApp|width=100%|height=500px|app=pnrcnm2fa22}}| Arbeitsmethode |Farbe={{Farbe|orange}} }}
[[File:Luxor Hotel.jpg|rahmenlos|mini|rechts|Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe]]
{{Box | Aufgabe 10: Oberfläche berechnen mit unbekanntem Parameter|Auf dem Bild rechts siehst du das Luxor Hotel und Casino. Es steht in Las Vegas und zeichnet sich vor allem durch seine Pyramidenform aus. Die Außenfassade besteht fast vollständig aus Glas und muss natürlich regelmäßig geputzt werden. Dafür soll eine neue Reinigungsfirma engagiert werden. Diese möchte aber vorab wissen, wie viele Quadratmeter circa zu putzen sind. Du weißt, dass das Gebäude 107 m hoch ist und 106,7 m breit.


'''a)''' Welche Angabe, die du zur genauen Berechnung der zu reinigenden Fläche benötigst, fehlt?
'''Mantelfläche M:'''


{{Lösung versteckt|Achte genau darauf, welche Höhe gegeben ist und welche Höhe du zur Berechnung der Seitenflächen benötigst.|Tipp|Tipp verbergen}}
<math>M = 4 \cdot A = 4\cdot 22{,}54</math>


'''b)''' Berechne die Größe der zu reinigenden Fläche, indem du die fehlende Angabe schätzt.
<math>M = 90{,}16 \text{ m}^{2} </math>


| Arbeitsmethode |Farbe=#CD2990}}
'''Oberfläche O:'''


<div style="background:#FFFACD; border:ridge #FFEC8B; padding:10px">Das Luxor Hotel und Casino kam auch schon in der Aufgabe 9 vor. Um deine Ergebnis zu kontrollieren, kannst du dies mit der Lösung aus Aufgabe 9 abgleichen.</div>
<math>O = G + M = 36{,}6 + 90{,}16 </math>


[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe x.'''
<math>O = 126{,}76 \text{ m}^{2}</math>


{{Box|Aufgabe 11: Oberfläche vom Louvre schätzen| Unter folgendem Link ([earth.google.com/web/@48.86118,2.3352586,35.74698338a,0d,51.73771365y,125.13192226h,99.81930397t,0r/data=IjAKLEFGMVFpcE9aTE92b3ZHNTQwOHR1Wm5LRnJBSGFzS2VuRTVjZlRNRTRfVEtKEAU]) findest du eine Streetview-Ansicht vom Louvre. Bestimme nun den Oberflächeninhalt der Glasfläche, indem du die benötigten Parameter vorerst schätzt.| Arbeitsmethode |Farbe=purple}}
|Lösung|Lösung verbergen}}  


|Arbeitsmethode |Farbe=#CD2990}}


==Vertiefen und Vernetzen==
==Vertiefen und Vernetzen==
{{Box|'''Aufgabe x: Pyramidenstumpf'''|[[File:Upside down Pyramid, Bratislava 02.jpg|rechts|mini|Slovak Radio Building]]
{{Box|Info|In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgabe 13 ist als Knobelaufgabe gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.|Kurzinfo}}
Das Slovak Radio Building in Bratislava (Slowakei) hat die Form eines umgedrehten quadratischen Pyramidenstumpfes. Die Seiten sowie das Dach des Gebäudes sollen eine neue Glasfassade erhalten, die aus 12 mm starkem Sicherheitsglas bestehen soll. Das Gebäude ist an der unteren Kante 22,59 Meter breit, an der oberen Kante 74,33 Meter breit und ist 42,7 Meter hoch. Die Seitenhöhe der Fassade beträgt 49,7 Meter.


a) Berechne, wie viel Quadratmeter des 12 mm starken Glases für die neue Fassade und das Dach benötigt werden. Runde auf zwei Stellen nach dem Komma.
{{Lösung versteckt|Die Seitenflächen des Gebäudes sind trapezförmig.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Die Formel für die Berechnung des Flächeninhaltes eines Trapezes lautet: <math>A=\frac{a+c}{2} \cdot h</math>|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen die Lösung nach der oben aufgestellten Formel:
<math>O=M+G.</math>


Die Mantelfläche besteht hier aus vier identischen Trapezen, mit den Kantenlängen <math>a=74,33\text{ m}, c=22,59\text{ m}</math> und der Höhe <math>h_a=49,7\text{ m}</math>. Es gilt somit für die Mantelfläche:
{{Box|Aufgabe 12: Nikolaus-Häuschen|
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt'''


<math>M=4 \cdot \frac{a+c}{2} \cdot h_a=4 \cdot \frac{74,33+22,59}{2} \cdot 49,7=2408,462 \text{ [m²]} \approx 2408,46 \text{ [m²]}</math>.
{{Lösung versteckt|Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.|Tipp|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen als erstes den Oberflächeninhalt des Quaders. Die Grundfläche berechnet sich aus


Die Grundfläche ist in diesem Fall das Dach des Gebäudes, welches ebenfalls aus Glas bestehen soll:
<math>G=a \cdot b=6 \cdot 12=72 \text{ cm}^{2}</math>.


<math>G=a^2=74,33 \cdot 74,33=5524,9489 \text{ [m²]} \approx 5524,95 \text{ [m²]}</math>
Als nächstes wird die Mantelfläche des Quaders berechnet.
Zusammen gilt dann: <math>O=M+G=2408,46+5524,95=7933,41 \text{ [m²]}</math>


Es werden insgesamt <math>7933,41 \text{ }</math> Sicherheitsglas benötigt.|Lösung zu a) anzeigen|Lösung verbergen}}
<math>M_{\text{Quader}}=2 \cdot a \cdot c+2 \cdot b \cdot c=2 \cdot 6 \cdot 5+2 \cdot 12 \cdot 5=60+120=180 \text{ cm}^{2}</math>


b) Das Sicherheitsglas kostet im Handel ungefähr 75 €/m². Bei der Montage der Fassade werden immer einige Glasplatten beschädigt, sodass 2% mehr Glas gekauft wird, als eigentlich für die Fassade benötigt wird. Berechne, wie hoch die Materialkosten sind, die für die neue Fassade entstehen.
Nun berechnen wir die Mantelfläche des Daches. Zunächst berechnen wir die Fläche eines der ersten beiden Dreiecke:


{{Lösung versteckt|Wir berechnen zunächst die zu bestellende Glasmenge:
<math>A_{\text{Dreieck-1}}= \frac{1}{2} \cdot a \cdot h_a=\frac{1}{2} \cdot 6 \cdot 8{,}37=25{,}11 \text{ cm}^{2}</math>.
<math>7933,41 \cdot 1,02=8092,0782 \text{ [m²]} \approx 8092,08 \text{ [m²]}</math>


Nun folgt für den Materialpreis: <math>8092,08 \cdot 75=606906 \text{ €}</math>
Nun fehlt noch die Fläche eines der zweiten beiden Dreiecke:


Das Material für die neue Fassade kostet insgesamt <math>606906 \text{ }</math>|Lösung zu b) anzeigen|Lösung verbergen}}
<math>A_{\text{Dreieck-2}}= \frac{1}{2} \cdot h \cdot h_b=\frac{1}{2} \cdot 12 \cdot 5{,}83=34,98 \text{ cm}^{2}</math>.
|Arbeitsmethode|Farbe=purple}}
 
Wir erhalten insgesamt für die Mantelfläche des pyramidenförmigen Daches:
 
<math>M_{\text{Dach}}=2 \cdot A_{\text{Dreieck-1}}+2 \cdot A_{\text{Dreieck-2}}=2 \cdot 25{,}11+2 \cdot 34{,}98=50{,}22+69{,}96=120{,}18 \text{ cm}^{2}</math>.
 
Insgesamt erhalten wir also: <math>O=G+M_{\text{Quader}}+M_{\text{Dach}}=72+180+120{,}18=372{,}18 \text{ cm}^{2}</math>.
 
Für 23 Schülerinnen und Schüler muss die Lehrkraft also <math>23 \cdot 372{,}18=8560{,}14 \text{ cm}^{2}</math> Papier mitbringen.|Lösung|Lösung verbergen}}
|Arbeitsmethode|Farbe=#CD2990}}




{{Box|'''Aufgabe y: Tipi'''|
{{Box|Aufgabe 13: Tipi|
  [[Datei:Teepee and Clifford King (14059271679).jpg|mini|alternativtext=|Tipi]]
  [[Datei:Teepee and Clifford King (14059271679).jpg|mini|alternativtext=|Tipi]]


Für ein Tipi-Modell soll eine Plane hergestellt werden. Das Tipi hat die Form einer regelmäßigen sechseckigen Pyramide, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet. Jede der sechs Seiten des Tipis ist an der Grundkante 1,08 m breit und 3,02 m hoch. Die halbrunde Öffnung hat einen Durchmesser von 78 cm.
Für das Tipi auf dem Foto soll eine Plane hergestellt werden. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen neuneckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.


Berechne, wie viel Quadratmeter Zeltplane für ein Tipi benötigt wird.
Berechne, wie viel Quadratmeter Zeltplane für das Tipi benötigt wird.
{{Lösung versteckt|Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Schätze die benötigten Größen zur Berechnung der Fläche, indem du den abgebildeten Menschen als Referenzgröße verwendest.|Tipp 1|Tipp verbergen}}
{{Lösung versteckt|Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel <math>A=r^2 \cdot \pi</math> berechnen.|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.|Tipp 2|Tipp verbergen}}
{{Lösung versteckt|Wir berechnen zunächst die Mantelfläche der sechseckigen Pyramide:
{{Lösung versteckt|Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel <math>A=\frac{1}{2} \cdot \pi \cdot r^2</math> berechnen.|Tipp 3|Tipp verbergen}}
<math>M=6 \cdot \frac{1}{2} \cdot 1,08 \cdot 3,02=9,7848 \approx 9,79 \text{ [m²]}</math>
{{Lösung versteckt|Wir berechnen zunächst die Mantelfläche der neuneckigen Pyramide. Dazu müssen wir zunächst die fehlenden Daten schätzen. Wir nehmen an, dass der Mensch ungefähr <math>1{,}70 \text{ m}</math> groß ist. Wir schätzen daher mit dem Augenmaß, dass die Seitenhöhe des Tipis ungefähr <math>4{,}1 \text{ m}</math> beträgt. Die Breite einer Grundkante schätzen wir auf ungefähr <math>1{,}3 \text{ m}</math>. Wir berechnen zunächst den Flächeninhalt einer einzelnen Seitenfläche (also eines Dreiecks) der neuneckigen Pyramide:


Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:
<math>A_{\text{Dreieck}}=\frac{1}{2} \cdot 1{,}3 \cdot 4{,}1=2{,}665 \text{ m}^{2} \approx 2{,}67 \text{ m}^{2}</math>
<math>A_{Kreis}=\frac{1}{2} \cdot 0,39^2 \cdot \pi \approx 0,24 \text{ [m²]}
\Rightarrow A_{gesucht}=9,79-0,24=9,55 \text{ [m²]}</math>
Für ein Tipi werden ungefähr <math>9,55 \text{ }</math> Zeltplane benötigt.|Lösung anzeigen|Lösung verbergen}}
|Arbeitsmethode|Farbe=pink}}


{{Box|'''Aufgabe z: Zusammengesetzte Körper'''|
Als nächstes berechnen wir den Mantelflächeninhalt der Pyramide:
<math>M=9 \cdot A_{\text{Dreieck}}=9 \cdot 2{,}67=24{,}03 \text{ m}^{2}</math>


zusammengesetzte Körper (Dachstuhl/Fachwerkhaus/Kirchturm)
Wir schätzen den Durchmesser des Halbkreises auf <math>1{,}3 \text{ m}</math>, da der Eingang ungefähr die Breite der Grundseite hat.
Die Schülerinnen und Schüler einer fünften Klasse sollen vor Weihnachten in der Schule eigene Nikolaushäuschen bauen, die einen quaderförmigen Körper sowie ein pyramidenförmiges Dach haben.
Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:


??? Nikolaushäuschen (Quader mit Pyramidendach) selbst gebaut (Frage: Wie viel Pappe braucht man, wenn alle SuS einer Klasse ein Häuschen bauen sollen?, Verschnitt 20% miteinrechnen) ???
<math>A_{\text{Halbkreis}}=\frac{1}{2} \cdot 0{,}65^2 \cdot \pi \approx 0{,}66 \text{ m}^{2}
\Rightarrow A_{\text{gesucht}}=24{,}03-0{,}66=23{,}37 \text{ m}^{2}</math>
Für das Tipi werden ungefähr <math>23{,}37 \text{ m}^{2}</math> Zeltplane benötigt.|Lösung|Lösung verbergen}}


{{Lösung versteckt|Hier steht ein Tipp.|Tipp|Tipp verbergen}}
{{Lösung versteckt|Hier steht die Lösung.|Lösung anzeigen|Lösung verbergen}}
|Arbeitsmethode|Farbe=purple}}
|Arbeitsmethode|Farbe=purple}}


{{Fortsetzung|weiter=weiter zum nächsten Kapitel|weiterlink=Digitale_Werkzeuge_in_der_Schule/Pyramiden_entdecken/Pyramiden_verknüpfen}}
{{Fortsetzung|weiter=weiter zum nächsten Kapitel|weiterlink=Digitale_Werkzeuge_in_der_Schule/Pyramiden_entdecken/Pyramiden_verknüpfen}}

Aktuelle Version vom 1. Dezember 2022, 07:53 Uhr

Info

In diesem Lernpfadkapitel lernst du

  • wie du von Pyramiden den Oberflächeninhalt schätzen kannst.
  • wie du von Pyramiden den Oberflächeninhalt berechnen kannst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Wiederholung

Info
Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, kannst du direkt zu Aufgabe 5 gehen. Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1, 2, 3 und 4).

Rechteckigen Flächeninhalt berechnen

Aufgabe 1: Flächeninhalt vom Rechteck

Berechne den Flächeninhalt des folgenden Rechtecks (denke auch daran, die richtige Einheit anzugeben):


Zur Berechnung des Flächeninhaltes benötigst du nicht die Diagonale.
Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet:

Dreieckigen Flächeninhalt berechnen

Aufgabe 2: Flächeninhalt vom Dreieck

Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben):


Du benötigst zur Berechnung eines dreieckigen Flächeninhaltes die Höhe und die Grundseite.
Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:


Info
In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.


Aufgabe 3: Rechteckige Flächeninhalte

Berechne den Flächeninhalt folgender Rechtecke.

a)

b)

Berechnung in m:

oder

Berechnung in dm:


Aufgabe 4: Dreieckige Flächeninhalte

Berechne den Flächeninhalt folgender Dreiecke.

a)

b)


Berechnung in m:

oder

Berechnung in dm:

oder

Berechnung in cm:


Aufgabe 5: Formeln notieren

Trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Die Formel zur Berechnung eines rechteckigen Flächeninhaltes lautet:

Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:

Oberflächeninhalte berechnen

Aufgabe 6: Materialien berechnen

a) Lies dir eine der folgenden Situationsbeschreibungen durch.

Louvre_Museum_(228021559)

1981 initiierte der damalige französische Staatspräsident das Projekt „Grand-Louvre“. Im Rahmen dessen wurde der Architekt Ieoh Ming Pei beauftragt, die heutige Glaspyramide im Zentrum des Palastes zu entwickeln. Die Blaupause steht und die Vision ist klar: Die Pyramide soll komplett mit Glas umfasst werden! Nun geht es darum zu ermitteln, wie viele der rautenförmigen Glasscheiben hergestellt werden müssen.

Kheops-Pyramid.jpg

Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Diese höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend Steine gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.

Münster, St.-Paulus-Dom -- 2019 -- 3536

Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmdächer wieder mit neuen Dachziegeln belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
 

b) Überlege dir bei einer der Situationen, wie man das Problem mathematisch lösen könnte. Beschreibe dein Vorgehen auf einem Zettel in Stichpunkten. Hier sind keine Rechnungen erforderlich und du brauchst auch nicht zählen.

Die Gebäude sind allesamt Pyramiden und haben vier gleichgroße, dreieckige Seitenflächen. Was benötigst du zum Berechnen einer solchen Seitenfläche? Muss die Grundfläche bei der Materialberechnung berücksichtigt werden?

Da die Pyramiden auf einem Untergrund stehen, muss die Grundfläche nicht berechnet werden.

Da eine Seitenfläche dreieckig ist, kann man die Formel zur Berechnung eines Dreiecks benutzen:

Da die Seitenflächen gleichgroß sind, braucht man nur den Materialverbrauch für eine Seitenfläche zu berechnen und vervierfacht diesen.

Man benötigt also nur die Maße der Grundseite und der Höhe des Dreiecks, um den Flächeninhalt einer Seitenfläche zu bestimmen. Wenn man nun den Flächeninhalt kennt, den ein Materialstück benötigt, so kann man durch Teilen den Materialverbrauch für eine Seitenfläche berechnen.
Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.

Das so entstandene Netz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.

Den Flächeninhalt des gesamten Netzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.


Merksatz: Oberflächeninhalt

Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:

.

Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.

Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.


Beispiel: Quadratischen Oberflächeninhalt berechnen

Betrachte die Pyramide rechts, mit einer Kantenlänge von und einer Seitenhöhe von .

Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Grundfläche :

.

Seitenfläche :

Mantelfläche :

.

Oberflächeninhalt :


Aufgabe 7: Lückentext 'Rechteckige Pyramide'




Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

a)

Grundfläche :

Seitenfläche :

Oberflächeninhalt :

b)

Seitenfläche :

Seitenfläche :

Mantelfläche :

c)

Grundfläche :

Seitenfläche :

Seitenfläche :

Mantelfläche :

Oberflächeninhalt :

d)

Seitenfläche :

Mantelfläche :

 


Aufgabe 9: Tetraeder?

Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.

About icon (The Noun Project).svg Du kannst durch Klicken, Ziehen und Loslassen mit der Maus die Pyramide drehen. Außerdem kannst du auch die Zahlen genauso verschieben, um sie besser lesen zu können.

GeoGebra

Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:

.

Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Erkläre, welche Fehler Kevin gemacht hat und korrigiere das Ergebnis!

Tatsächlich unterscheiden sich bei dieser Pyramide die Kantenlängen, da es sich nicht um ein gleichseitiges Dreieck als Grundfläche handelt. Somit sind auch die Seitenflächen nicht deckungsgleich und müssen einzeln berechnet werden. Außerdem hat Kevin die Höhe der Pyramide als Seitenhöhe aufgefasst. Eine korrekte Lösung könnte so aussehen:

Grundfläche G:

Mantelfläche M:

Oberflächeninhalt O:

Pyramiden schätzen

Info
Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.


Aufgabe 10: Oberfläche von Pyramiden schätzen

Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!). Am Ende bleiben einige Werte übrig, da es mehr Werte als Bilder gibt.

About icon (The Noun Project).svg Durch Anklicken der Bilder werden diese größer.


Sortiere die Größen erstmal grob bevor du sie den Bildern zuordnest.


Aufgabe 11: Karlsruher Pyramide schätzen
Karlsruher Pyramide

Auf dem Bild siehst du die Karlsruher Pyramide, die auf dem Marktplatz in Karlsruhe steht. Berechne den Oberflächeninhalt der Pyramide (inklusive der Grundfläche), indem du zuvor die für die Berechnung notwendigen Größen schätzt.


Info
Die Grundfläche der Pyramide kann als quadratisch angenommen werden.
Nutze die Personen auf dem Bild als Referenzgröße.


Info
In der Lösung werden die exakten Werte genutzt, deine Ergebnisse können also etwas von dieser Lösung abweichen. Die Lösung kann dir aber als Orientierung dienen.

Es gilt und

Damit gilt dann:

Grundfläche G:

Seitenfläche A:

Mantelfläche M:

Oberfläche O:

Vertiefen und Vernetzen

Info
In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgabe 13 ist als Knobelaufgabe gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.


Aufgabe 12: Nikolaus-Häuschen

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Die Dachfläche besteht aus vier Dreiecken, von denen die jeweils gegenüberliegenden gleich groß sind.

Wir berechnen als erstes den Oberflächeninhalt des Quaders. Die Grundfläche berechnet sich aus

.

Als nächstes wird die Mantelfläche des Quaders berechnet.

Nun berechnen wir die Mantelfläche des Daches. Zunächst berechnen wir die Fläche eines der ersten beiden Dreiecke:

.

Nun fehlt noch die Fläche eines der zweiten beiden Dreiecke:

.

Wir erhalten insgesamt für die Mantelfläche des pyramidenförmigen Daches:

.

Insgesamt erhalten wir also: .

Für 23 Schülerinnen und Schüler muss die Lehrkraft also Papier mitbringen.


Aufgabe 13: Tipi
Tipi

Für das Tipi auf dem Foto soll eine Plane hergestellt werden. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen neuneckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.

Berechne, wie viel Quadratmeter Zeltplane für das Tipi benötigt wird.

Schätze die benötigten Größen zur Berechnung der Fläche, indem du den abgebildeten Menschen als Referenzgröße verwendest.
Der gesuchte Flächeninhalt berechnet sich aus der Mantelfläche abzüglich des halbrunden Eingangs.
Bei dem Eingang handelt es sich um einen Halbkreis. Der Flächeninhalt dieses Halbkreises lässt sich mit der Formel berechnen.

Wir berechnen zunächst die Mantelfläche der neuneckigen Pyramide. Dazu müssen wir zunächst die fehlenden Daten schätzen. Wir nehmen an, dass der Mensch ungefähr groß ist. Wir schätzen daher mit dem Augenmaß, dass die Seitenhöhe des Tipis ungefähr beträgt. Die Breite einer Grundkante schätzen wir auf ungefähr . Wir berechnen zunächst den Flächeninhalt einer einzelnen Seitenfläche (also eines Dreiecks) der neuneckigen Pyramide:

Als nächstes berechnen wir den Mantelflächeninhalt der Pyramide:

Wir schätzen den Durchmesser des Halbkreises auf , da der Eingang ungefähr die Breite der Grundseite hat. Nun berechnen wir den Flächeninhalt des Halbkreises und ziehen diesen dann von der Mantelfläche ab:

Für das Tipi werden ungefähr Zeltplane benötigt.