Benutzer:Georg WWU-8/Testseite2: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(11 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
==Punkte und Vektoren==
==Punkte und Vektoren==
{{Box|1= Übung 1: Koordinatensysteme|2= Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben.
# Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3.
# Zeichne die Punkte <math> A (1|2|1)</math>,<math> B(1|4|2)</math>, <math> C(1|2|-1,5)</math> und <math>  D(1|4|-0,5) </math> in das gezeichnete Koordinatensystem. Handelt es sich um eine Figur oder um einen Körper? Benenne den Körper.
# Nutze den Punkt <math> A (1|2|1)</math> aus Aufgabenteil 2. Füge die Punkte <math> E (-1|2|1)</math>,<math> F(1|0|1)</math>, <math> G(-1|0|1)</math> und <math>  H(0|1|5) </math>. Handelt es sich um eine Figur oder um einen Körper?
{{Lösung versteckt|1= Punkte in einem dreidimensionalen Koordinatensystem kannst du mithilfe eines "Pfad-Folge-Verfahren"  genau bestimmen. Dabei geht man die durch die Punktkoordinaten angegeben Längeneinheiten in die Richtung der jeweiligen Achsen. Das folgende Bild verdeutlicht das Verfahren.
[[Datei:Punkte im dreidimensionalen Koordinatensystem.jpg|rahmenlos|500x500px|Pfad-Folge-Verfahren]] |2= Tipp|3=Einklappen}}
{{Lösung versteckt|1=  Bei Aufgabe 2 handelt es sich um ein Parallelogram. Bei Aufgabe 3 bekommst du eine Pyramide heraus, die eine quadratische Grundfläche besitzt. Deine Lösung kann aufgrund einer anderen Skalierung der Achsen natürlich auch von folgenden Lösung abweichen.
[[Datei:Lösung Aufgabe 1-2-3.jpg|rahmenlos|500x500px|Lösung]] |2= Lösung|3=Einklappen}}
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Übung 2: Punkte im Koordinatensystem|2= Der angegebene Tetraeder hat eine Höhe von 4 Skalierungseinheiten. An welchen Koordinaten befinden sich die Ecken des Tetraeders? Wähle eine richtige Lösung für jeden Punkt aus.
{{Box|1= Übung 2: Punkte im Koordinatensystem|2= Der angegebene Tetraeder hat eine Höhe von 4 Skalierungseinheiten. An welchen Koordinaten befinden sich die Ecken des Tetraeders? Wähle eine richtige Lösung für jeden Punkt aus.
Zeile 8: Zeile 22:
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Übung 3: Geometrische Objekte im Koordinatensystem|2= Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt</nowiki><math> A(0|0|0)</math>. Welche Aussagen stimmen mit den abgebildeten Punkten überein? [[Datei:PyramideimKS.png|rahmenlos|400x400px|Pyramide mit Grundfläche <math> ABCD </math> und Scheitelpunkt <math> S </math>]] {{Lösung versteckt|1=Stelle dir vor, dass du die Kanten aneinander klebst. Was kannst du ausschließen? Welche Eigenschaften kennst du, die hier nicht zutreffen?|2= Tipp|3=Einklappen}}
{{Box|1= Übung 3: Geometrische Objekte im Koordinatensystem|2= Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt <math> A(0|0|0)</math>. Welche Aussagen stimmen mit den abgebildeten Punkten überein? [[Datei:PyramideimKS.png|rahmenlos|400x400px|Pyramide mit Grundfläche <math> ABCD </math> und Scheitelpunkt <math> S </math>]]  
Welche Aussagen stimmen mit den abgebildeten Punkten überein?|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Aufgabe 11 - Für die ganz Schnellen eine Knobelaufgabe: Besondere Vierecke
|2=


In einem kartesischen Koordinatensystem sind die Punkte <math> A(3|3|5)</math>, <math> B(3,5|3,5|1)</math> und <math> C(6,5|2,5|3) </math> gegeben.  
<quiz display="simple">
{Welche Aussage stimmt für die Koordinaten der Punkte <math> B </math>,<math> C </math> und <math> D </math>  ?}
- <math> B (5|0|0),C(0|0|5),D(0|5|0) </math>
- <math> B(0|5|0),C(0|5|5),D(0|0|5) </math>
+ <math> B (5|0|0),C(5|5|0),D(0|5|0) </math>
- <math> B (1|0|0),C(0|1|1),D(0|0|1) </math>
</quiz>
{{Lösung versteckt|1=Betrachte jeweils zuerst die x1-Achse, dann die x2-Achse und abschließend die x3-Achse.|2= Tipp 1|3=Einklappen}}


<quiz display="simple">
<quiz display="simple">
{a)  Um welche Art von Dreieck handelt es sich?}
{Welche Aussage stimmt für die Größe der Grundfläche der Pyramide ?}
- rechtwinkliges Dreieck
- Die Größe der Grundfläche der Pyramide beträgt <math>5 LE^2 </math>.
- gleichseitiges Dreieck
- Die Größe der Grundfläche der Pyramide beträgt <math>10 LE^2 </math>.
+ gleichschenkliges Dreieck
+ Die Größe der Grundfläche der Pyramide beträgt <math>25 LE^2 </math>.
</quiz>
</quiz>
{{Lösung versteckt|1=Die Grundfläche einer Pyramide berechnet man mit durch die Multiplikation zweier Seiten.|2= Tipp 2|3=Einklappen}}


<quiz display="simple">
<quiz display="simple">
{b) Sei <math> P </math> nun ein weiter Punkt im bereits vorhandenen System. Welche Koordinaten muss <math> P </math> haben, damit <math> P </math> gemeinsam mit <math> A </math>, <math> B </math> und <math> C </math> die Eckpunkte einer Raute bildet?}
{Wo liegt der Scheitelpunkt der Pyramide ?}
+ <math> P(7|3|-1)</math>
+ Der Scheitelpunkt liegt bei <math> S (2,5|2,5|6) </math>.
- <math> P(-7|-3|1)</math>
- Der Scheitelpunkt liegt bei <math> S (5|5|5) </math>.
- <math> P(5|2|-3)</math>
- Der Scheitelpunkt liegt bei <math> S (2,5|2,5|5) </math>.
- <math> P(-5|-2|3)</math>
</quiz>
</quiz>
{{Lösung versteckt|1=Zeichne dir ein gleichschenkliges Dreieck auf und mach dir zunächst klar welche Seite die Basis des Dreieicks ist.|2=Tipp 1|3=Tipp verbergen}}
{{Lösung versteckt|1=Bei der Berechnung des Scheitelpunkts sind die 2 der 3 Koordinaten durch die Bestimmung der Seitenflächen vorgegeben. Dabei solltest du beachten, dass nicht die volle Seitenfläche berechnet wird.|2= Tipp 3|3=Einklappen}}
{{Lösung versteckt|1=Gegenüberliegende Seiten sind in einer Raute gleich lang.|2=Tipp 2|3=Tipp verbergen}}
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}
{{Lösung versteckt|1=Verwende den Vektor <math>\vec{ AC }</math> am Punkt <math> B </math>.|2=Tipp 3|3=Tipp verbergen}}
 
 
{{Box|1= Übung 4: Vektoren|2= Betrachte die dargestellten Vektoren <math>\vec{u} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} </math>, <math>\vec{v} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}</math> und <math>\vec{w} = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}</math>.
 
[[Datei:Vektoren.jpg|rahmenlos|600x600px]]


<quiz display="simple">
Für den Punkt <math> \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}</math> gilt
{c) wir betrachten nun wieder das Dreieck <math> ABC </math>. Ein neuer Punkt <math> Q </math> solls o gewählt werden, dass er zusammen mit dem Dreieck <math> ABC </math> ein Parallelogramm bildet, das keine Raute ist. Welche Koordinaten passen zu <math> Q </math>? Es sind zwei Antwortmöglichkeiten richtig. Finde beide!}
+ <math> P(6|2|7)</math>
- <math> P(7|4|3)</math>
+ <math> P(0|4|3)</math>
- <math> P(6|3|-1)</math>
</quiz>
{{Lösung versteckt|1=Zeichne dir ein gleichschenkliges Dreieck auf <math> ABC </math> und überleg dir wie ein Parallelogram entstehen könnte. |2=Tipp 1|3=Tipp verbergen}}
{{Lösung versteckt|1=Sei dir bewusst, dass es auch Gegenvektoren gibt.|2=Tipp 2|3=Tipp verbergen}}
{{Lösung versteckt|1=Verwende den Vektor <math>\vec{ CA }</math> am Punkt <math> B </math> und den Vektor <math>\vec{ BA } </math> am Punkt <math> C </math>.|2=Tipp 3|3=Tipp verbergen}}
|3= Arbeitsmethode|Farbe={{Farbe|grün|dunkel}}}}


<math>\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \vec{v} + \vec{u} + \vec{w}</math>.


<div class="multiplechoice-quiz">
Welche Punkte erhältst du bei folgenden Verschiebungen durch die Vektoren.


Was ergibt 1 + 1? (!2,2)  (2) (!1,9) (!3)
# <math>\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \vec{w} </math>
# <math>\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \vec{u} </math>
# <math>\begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} - \vec{w} </math>
# <math>\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \vec{u}-\vec{w}-\vec{v} </math>
# <math>\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \vec{v} + \vec{w}+ \vec{u}</math>
# <math>\begin{pmatrix} 0,5 \\ 2 \\ 1 \end{pmatrix} + \vec{w} + \vec{u} +\vec{v} </math>
# <math>\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \vec{u} - \vec{w}</math>
# <math>\begin{pmatrix} -1 \\ 2 \\ -1\end{pmatrix} + \vec{v} - \vec{v}</math>
# <math>\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \vec{u} - \vec{v} - \vec{w}</math>
# <math>\begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} + 2* \vec{u} </math>


Welches Tier ist ein Säugetier? (!Hai) (Wal) (Känguru) (!Meise) (Maus) (!Biene)


</div>


<div class="lueckentext-quiz">
{{Lösung versteckt|1=
# <math>\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} </math>
# <math>\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} </math>
# <math>\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} </math>
# <math>\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>
# <math>\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} </math>
# <math>\begin{pmatrix} 0,5 \\ 2 \\ 1 \end{pmatrix} </math>
# <math>\begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} </math>
# <math>\begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} </math>
# <math>\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} </math>
# <math>\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} </math>
  |2= Lösung|3=Einklappen}}


Beim '''Erweitern''' und Kürzen muss man
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}
Zähler und '''Nenner''' mit der gleichen
Zahl multiplizieren bzw. dividieren.


</div>


==Spielwiese==
==Spielwiese==

Aktuelle Version vom 30. April 2021, 13:08 Uhr

Punkte und Vektoren

Übung 1: Koordinatensysteme

Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben.

  1. Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3.
  2. Zeichne die Punkte ,, und in das gezeichnete Koordinatensystem. Handelt es sich um eine Figur oder um einen Körper? Benenne den Körper.
  3. Nutze den Punkt aus Aufgabenteil 2. Füge die Punkte ,, und . Handelt es sich um eine Figur oder um einen Körper?


Punkte in einem dreidimensionalen Koordinatensystem kannst du mithilfe eines "Pfad-Folge-Verfahren" genau bestimmen. Dabei geht man die durch die Punktkoordinaten angegeben Längeneinheiten in die Richtung der jeweiligen Achsen. Das folgende Bild verdeutlicht das Verfahren.

Pfad-Folge-Verfahren

Bei Aufgabe 2 handelt es sich um ein Parallelogram. Bei Aufgabe 3 bekommst du eine Pyramide heraus, die eine quadratische Grundfläche besitzt. Deine Lösung kann aufgrund einer anderen Skalierung der Achsen natürlich auch von folgenden Lösung abweichen.

Lösung


Übung 2: Punkte im Koordinatensystem

Der angegebene Tetraeder hat eine Höhe von 4 Skalierungseinheiten. An welchen Koordinaten befinden sich die Ecken des Tetraeders? Wähle eine richtige Lösung für jeden Punkt aus.


Betrachte zuerst die Punkte 1 und 2. Welche Höhe haben sie? Was lässt sich über die x- und y-Koordinaten sagen?
Betrachte nun die Punkte 3 und 4. Lies nochmal die Aufgabenstellung. Was lässt sich über die x-, y- und z-Koordinaten sagen?


Übung 3: Geometrische Objekte im Koordinatensystem

Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt . Welche Aussagen stimmen mit den abgebildeten Punkten überein? Pyramide mit Grundfläche '"`UNIQ--postMath-0000000B-QINU`"' und Scheitelpunkt '"`UNIQ--postMath-0000000C-QINU`"'


Welche Aussage stimmt für die Koordinaten der Punkte , und  ?

Betrachte jeweils zuerst die x1-Achse, dann die x2-Achse und abschließend die x3-Achse.

Welche Aussage stimmt für die Größe der Grundfläche der Pyramide ?

Die Größe der Grundfläche der Pyramide beträgt .
Die Größe der Grundfläche der Pyramide beträgt .
Die Größe der Grundfläche der Pyramide beträgt .

Die Grundfläche einer Pyramide berechnet man mit durch die Multiplikation zweier Seiten.

Wo liegt der Scheitelpunkt der Pyramide ?

Der Scheitelpunkt liegt bei .
Der Scheitelpunkt liegt bei .
Der Scheitelpunkt liegt bei .

Bei der Berechnung des Scheitelpunkts sind die 2 der 3 Koordinaten durch die Bestimmung der Seitenflächen vorgegeben. Dabei solltest du beachten, dass nicht die volle Seitenfläche berechnet wird.


Übung 4: Vektoren

Betrachte die dargestellten Vektoren , und .

Vektoren.jpg

Für den Punkt gilt

.

Welche Punkte erhältst du bei folgenden Verschiebungen durch die Vektoren.



Spielwiese

Schreiben im Wiki

Neben normalen Text kann auch kursiven oder fett gedruckten Text schreiben. Ebenso ist eine Kombination aus beidem möglich. Grüner Text ist schon etwas schwieriger und funktioniert über die Quelltextbearbeitung.

Vorlagen // Aufträge, Tipps und Hervorhebungen

Das ist ein Tipp.
Das ist eine Lösung


Aufgabe 1: Münzwurf
Versuche eine Münze hochzuwerfen und sie mit dem Mund aufzufangen. Achte dabei darauf nicht zu ersticken.


Kongruenzsätze
Dreiecke sind manchmal kongruent. Manchmal auch nicht


Polynomdivison
Besser nicht machen... kann ganz falsche Antworten verursachen


Dateien

Über die Bedienelemente

Lorem ipsum Ziegenproblem Lorem ipsum


Mittels Quelltexteingabe (Ohne Umfließen des Textes)

Ballwurf

Über Wikipedia (Ohne Rahmen)

Comedy Gold.


Interaktive Applets

LearningApp


GeoGebra

GeoGebra