Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen

Aus ZUM Projektwiki
Schullogo HLR.jpg

Funktionen

Funktionen
Darstellungen von Funktionen.png
Eine Funktion ist eine eindeutige Zuordnung. Sie lässt sich auf verschiedene Arten darstellen:
  • als Text
  • als Wertetabelle
  • als Funktionsgleichung
  • als Graph

Lineare Funktionen

Lineare Funktionen erkennen

Eine Funktion, deren Funktionsgleichung die Form f(x) = mx + b hat, heißt lineare Funktion. Der Graph einer linearen Funktion ist immer eine Gerade mit der Steigung m und dem y-Achsenabschnitt b. Der Graph schneidet die y-Achse im Punkt P(0Ib).

Lineare Funktionen erkennen:

Lineare Funktionen erkennen Zusammenfassung.png

Diese Eigenschaften werden in folgendem Lied besungen.
Hier heißt die Funktionsgleichung f(x) = mx + n (n statt b, du findest in verschiedenen Büchern verschiedene Bezeichnungen).


Übung: Lineare Funktionen erkennen
Entscheide in den folgenden Apps, ob die Funktion linear ist oder nicht. In der letzten App gib die Funktionsgleichung an oder lies m und b ab.

Lineare Funktionen: Wertetabelle

Wertetabelle erstellen

Berechne den y-Wert der Funktion, indem du den x-Wert in die Funktionsgleichung einsetzt.
Beispiel Bootsverleih: y = 2x + 5
Für x = 1 gilt: y = 2 · 1 + 5
                         = 7
Für x = 2 gilt: y = 2 · 2 + 5
                         = 9
Übertrage die Werte in die Wertetabelle:

x 0 1 2 3 4 ...
y 5 7 9 11 13 ...

Lineare Funktionen: Gleichung und Graph

Funktionsgraphen zeichnen

Trage die Punkte der Wertetabelle in ein Koordinatenkreuz ein und zeichne den Graphen der Funktion.
Erinnerung:"Zuerst nach rechts und dann nach oben, dann werde ich dich loben" bzw. "Zuerst Anlauf nehmen, dann hoch springen."
F(x)=2x+5 mit Punkten.png


Lineare Funktionen: Funktionsgleichung aufstellen
  • Lies den y-Achsenabschnitt b ab.
  • Zeichne das Steigungsdreieck und bestimme damit die Steiung m.

Beispiele:

1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):

Steigungsdreieck m ganze Zahl (positiv).png

2. Beispiel: m ist eine negative ganze Zahl:

Steigungsdreieck m ganze Zahl (negativ).png

3. Beispiel: m ist ein Bruch (positiv):

Steigungsdreieck m Bruch (positiv).png

4. Beispiel: m ist ein Bruch (negativ):

Steigungsdreieck m Bruch (negativ).png

Beispiel 1 (leicht): m ist eine natürliche Zahl
Funktionsgleichung einer Geraden bestimmen m=2.png
Beispiel 2 (mittel): m ist eine negative ganze Zahl
Funktionsgleichung einer Geraden bestimmen m=-1,5.png
Beispiel 3 (schwer): m ist ein Bruch
Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png
Übung: Bestimmen der Funktionsgleichung einer Geraden
Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.
leicht (*)

mittel (**)

schwer (***)



Lineare Funktionen: Graph zeichnen
  • Zeichne den y-Achsenabschnitt b ein. P(0|b)
  • Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
  • Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.

Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.

Schritt 1Gerade zur Gleichung zeichnen Schritt 1.png
Schritt 2Gerade zur Gleichung zeichnen 2. Schritt.png
Schritt 3Gerade zur Gleichung zeichnen Schritt 3.png

Du kannst auch mithilfe von zwei Punkte die Gerade zeichnen bzw. die Funktionsgleichung bestimmen. Wie dur vorgehst, zeigt das Video.

Lineare Funktionen: Nullstellen bestimmen

Schnittpunkte mit den Koordinatenachsen

Für den Schnittpunkt Py mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b.

Py (0|b)

Für den Schnittpunkt N mit der x-Achse (Nullstelle) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.

N (xNI0)

Übersicht Schnittpunkte mit den Koordinatenachsen


Lineare Funktionen: Punktprobe

Punktprobe
Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(xIy) in die Funktionsgleichung f(x) = mx + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.



Übung

Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch.

  • S. 122, P2 - P9
  • S. 150, Nr. 3-6

Quadratische Funktionen

Quadratische Funktionen

Es gibt verschiedene Formen quadratischer Funktionen.

  • Normalform: f(x) = x²
  • Scheitelpunktform: f(x) = a(x + d)² + e mit S(-d|e)
  • allgemeine Form: f(x) = ax² + bx + c

Die Scheitelpunktform quadratischer Funktionen

Übersicht Darstellungsformen quadratischer Funktionen.png

Scheitelpunktform
Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Wir haben die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.



Quadratische Funktionen: Scheitelpunktform und Normalform

Du kannst die Formen der Quadratischen Funktionen umwandeln:

Von der Scheitelpunktform zur Normalform

Beispiel:
f(x) = (x + 3)² - 4  |1. binomische Formel
   = x² + 2·x·3 + 3² - 4
   = x² + 6x + 9 - 4
   = x² + 6x + 5
Die Normalform eignet sich gut zur Nullstellenberechnung, denn hier kannst du die p-q-Formel anwenden.

Von der Normalform zur Scheitelpunktform

Beispiel:
f(x) = x² + 8x - 4   |quadratische Ergänzung = 4² = 16
   = x² + 8x + 16 - 16 - 4  |1. binomische Formel
   = (x + 4)² - 16 - 4
   = (x + 4)² - 20
Also lautet der Scheitelpunkt S(-4|-20)

Möchtest du anhand der Funktionsgleichung den Scheitelpunkt ablesen, wandle diese also in die Scheitelpunktform um.


Quadratische Funktionen: Nullstellen bestimmen

Ist die Parabelgleichung in der Scheitelpunktform gegeben, kannst du die Anzahl der Nullstellen erkennen.
Je nach Lage des Scheitelpunktes und der Öffnung der Parabel hat diese keine, eine oder zwei Nullstellen:
Anzahl der Nullstellen .jpg


Übung: Anzahl der Nullstellen

Wie viele Nullstellen hat die Parabel jeweils? Ordne in der LearningApp und im Quiz passend zu.


Tipp: Bestimme zunächst die Lage des Scheitelpunktes und die Öffnungsrichtung der Parabel. Ordne dann passend zu:

keine f(x) = x² + 3 f(x) = -2x² - 5 f(x) = (x+2)² + 1
eine f(x) = x² f(x) = (x - 4)² f(x) = -(x+2)²
zwei f(x) = x² - 3 f(x) = -2x² + 5 f(x) = (x+2)² - 1


Nullstellen quadratischer Funktionen berechnen

Die Nullstellen sind die Schnittpunkte der Parabel mit der x-Achse, also gilt immer f(x) = 0.

Du erhältst also immer eine quadratische Gleichung (rein quadratisch oder gemischt quadratisch). Wie du diese löst, hast du im 1. Themenblock erarbeitet, es sind zur Wiederholung jeweils Beispiele notiert.

1. Form: f(x) = ax²
Beispiel: f(x) = 3x²
f(x) = 0
3x² = 0    |:3
x² = 0    |
x = 0
N(0|0)

Natürlich hat jede Parabel mit der Funktionsgleichung f(x) = ax² die Nullstelle N(0|0), denn ihr Scheitelpunkt liegt im Ursprung. Der Scheitelpunkt ist also die Nullstelle.

2. Form: f(x) = ax² + c

Beispiel: f(x) = 0,5x² - 8

f(x) = 0
0,5x² - 8 = 0    |+8
0,5x² = 8      |:0,5
x² = 16         |
x1 = - und x2 = +
x1 = -4 und x2 = +4
N1(-4|0) und N2(4|0)

3. Form: Scheitelpunktform f(x) = a(x+d)²+e

Beispiel: f(x) = 2(x + 2)² - 18
f(x) = 0
2(x + 2)² - 18 = 0    |+18
2(x + 2)² = 18    |:2
(x + 2)² = 9        |
x1 + 2 = -    und x2 + 2 = +
x1 + 2 = -3 und x2 + 2 = 3     |-2
x1 = - 3 - 2    und x2 = + 3 - 2
x1 = -5 und x2 = 1
N1(-5|0) und N2(1|0)


Der Scheitelpunkt der Parabel liegt immer in der Mitte zwischen den beiden Nullstellen. Die x-Koordinate des Scheitelpunktes muss also -2 heißen. (x-Koordinate zwischen x = -5 und x = 1).
Dies passt zum Scheitelpunkt S(-2|-18), der aus der Parabelgleichung abgelesen werden kann.


4. Form: Normalform f(x) = x² + px + q
Lösung mit der p-q-Formel:
Normalform: f(x) = x² + px + q
x² + px + q = 0
x1/2 = -

Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0   | pq-Formel mit p=-6 und q=5
x1/2 = -
x1/2 = 3
x1/2 = 3
x1/2 = 32
x1 = 3 - 2 = 1 ; x2 = 3+2 = 5 N1(1|0) und N2(5|0)

4. Form: Normalform f(x) = x² + px + q (mit quadratischer Ergänzung )

Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0   | quadratische Ergänzung
x² - 6x + 3² - 3² + 5 = 0   | 2. binomische Formel
(x - 3)² - 9 + 5 = 0
(x - 3)² - 4 = 0   | nun hast du wieder die Scheitelpunktform und geht wie in Bsp 3 vor: +4
(x - 3)² = 4        |
x1 - 3 = -2 und x2 - 3 = 2     |+3
x1 = -2 + 3    und x2 = 2 + 3
x1 = 1 und x2 = 5

N1(1|0) und N2(5|0)

5. Form: allgemeine Form f(x) = ax² + bx + c
Wandle zunächst in die Normalform um.
Wende dann wieder die p-q-Formel an.

Beispiel: f(x) = 2x² + 12x + 10
f(x) = 0
2x² + 12x + 10 = 0   |:2 (Ziel: Normalform)
x² + 6x + 5 = 0  | pq-Formel mit p=6 und q=5
x1/2 = -
x1/2 = -3
x1/2 = -3
x1/2 = -32
x1 = -3 - 2 = -5 ; x2 = -3+2 = -1 N1(-5|0) und N2(-1|0)


Quadratische Funktionen: Funktionsgleichung aufstellen

Funktionsgleichung einer quadratischen Funktion bestimmen

Um die Funktionsgleichung einer quadratischen Funktion aufzustellen, musst du wissen, wie groß a, d und e sind. Du brauchst also

  • den Scheitelpunkt S(-d|e) und
  • einen weiteren Punkt auf der Parabel, um den Streckungsfaktor a zu bestimmen.
Mit den Werten kannst die dann die Funktionsgleichung in der Scheitelpunktform angeben.

Beispiel:
Eine Parabel hat den Scheitelpunkt S(0|-3) und geht durch den Punkt P(2|-2).
f(x) = a(x + d)² + e   |Setze für d=0 und e=-3 ein
f(x) = a(x - 0) + (-3)
f(x) = ax² - 3    |Setze die Koordinaten des Punkte P ein (Punktprobe)
-2 = a·2² - 3
-2 = 4a - 3    |+3
1 = 4a    |:4
= a
Also lautet die Funktionsgleichung der Parabel f(x) = x² - 3.


Modellieren - Anwendungsaufgaben

Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:

  • Scheitelpunkt
  • Nullstellen
  • Schnittpunkt mit der y-Achse
  • Koordinaten eines beliebigen Punktes

Verwende zur Lösung der Aufgabe die verschiedenen Darstellungsformen und die wiederholten Methoden zur Berechnung der verschiedenen besonderen Punkte.


Übung

Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch.

  • S. 123, P12 - P16
  • AB Quadratische Funktionen - Anwendungsaufgaben