Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 202: Zeile 202:
c) Löse wie in Beispiel 4<br>
c) Löse wie in Beispiel 4<br>
d) Löse wie in Beispiel 3|2=Tipps zu Nr. 1|3=Verbergen}}
d) Löse wie in Beispiel 3|2=Tipps zu Nr. 1|3=Verbergen}}
{{Lösung versteckt|1=Lösungen (der Größe nach sortiert)<br>
2,9cm; 4,4cm; 5,7cm; 8,1cm; 12,2cm; 14,0cm; <br>
29,7°; 37,7°; 52,3°;  60,3°; 60,5°; 62,6°|2=Vergleiche deine Lösungen zu Nr. 1|3= Verbergen}}
{{Lösung versteckt|a) Löse wie in Beispiel 2<br>
{{Lösung versteckt|a) Löse wie in Beispiel 2<br>
b) Löse wie in Beispiel 3<br>
b) Löse wie in Beispiel 3<br>
c) Löse wie in Beispiel 4<br>
c) Löse wie in Beispiel 4<br>
d) Löse wie in Beispiel 1|2=Tipps zu Nr. 2|3=Verbergen}}
d) Löse wie in Beispiel 1|2=Tipps zu Nr. 2|3=Verbergen}}
{{Lösung versteckt|1=Lösungen (der Größe nach sortiert):<br>
3,8cm; 5,7cm; 6,8cm; 7,8cm; 11,9cm; 14,1cm; <br>
24,4°; 29,2°;  29,5°;57,5°; 60,8°; 65,6°|2=Vergleiche deine Lösungen zu Nr. 2|3=Verbergen}}
{{Lösung versteckt|1=Löse wie in Beispiel 1|2=Tipp zu Nr. 3|3=Verbergen}}
{{Lösung versteckt|1=Löse wie in Beispiel 1|2=Tipp zu Nr. 3|3=Verbergen}}
{{Lösung versteckt|Lösungen:<br>
3,731km; 4,952km|Vergleiche deine Lösungen zu Nr. 3|Verbergen}}
<br>
<br>
{{Box|1=Übung 4|2=Zeichne zunächst eine Planskizze mit γ = 90° und markiere die gegebenen Größen. Berechne danach die fehlenden Größen. Notiere deine Rechnungen ausführlich. Buch
{{Box|1=Übung 4|2=Zeichne zunächst eine Planskizze mit γ = 90° und markiere die gegebenen Größen. Berechne danach die fehlenden Größen. Notiere deine Rechnungen ausführlich. Buch

Version vom 4. März 2021, 10:34 Uhr

Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken


2.1 Größen in rechtwinkligen Dreiecken berechnen

Du kennst schon eine Möglichkeiten, eine fehlende Seitenlänge in einem rechtwinkligen Dreiecken zu berechnen, wenn zwei Seiten gegeben sind:
Idee Flipchart.png

Erinnerung: Mit dem Satz des Pythagoras!

Wenn nun in einem rechtwinkligen Dreieck eine Seite und ein Winkel gegeben sind, kannst du mithilfe von Sinus, Kosinus und Tangens die Längen der anderen Seiten berechnen.
Wo kannst du das anwenden? Warum sollst du das lernen?
Es hilft z.B. bei Vermessungen:

St. Otger von Westen mit eingerüstetem Turm

Wir haben in Klasse 7 die Höhe des Stadtlohner Kirchturms mithilfe einer maßstabsgetreuen Zeichnung bestimmt, erinnerst du dich? Nun haben wir die Möglichkeit, die Höhe auf eine andere Art zu berechnen.

Kirchturm Stadtlohn Skizze.png
Wir messen den Blickwinkel, unter dem wir die Spitze des Kirchturms sehen und die Entfernung zur Kirche. Welche Größen des rechtwinkligen Dreiecks sind also gegeben, welche Größe ist gesucht?

Im rechtwinkligen Dreieck ist der Winkel = 56° gegeben, der Winkel ist der rechte Winkel. Außerdem ist die Länge der Seite c = 50 m gegeben. Das ist die Ankathete zu .
Gesucht ist die Länge der Seite h. Dies ist die Gegenkathete zu .

Also hilft uns hier der Tangens weiter, denn tan = .

Kirchturm Stadtlohn rechtwinkliges Dreieck.png
Bestimme nun die Höhe des Kirchturms!

tan = = . Stelle nun diese Gleichung nach h um.

tan (56°) = |∙ 50
tan (56°) ∙ 50 = h
74,1 (m) h

Der Kirchturm ist also ca. 74 m hoch.


Übung 1 (online)
Gib das Seitenverhältnis an und berechne jeweils die Länge der Strecke x in den nachfolgenden LearningApps.


Übung 2 (online und im Heft)

Löse auf der Seite Aufgabenfuchs die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft.

  • 8
  • 17
  • 25



Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken

Sind in einem rechtwinkligen Dreieck zwei Seitenlängen oder eine Seite und ein Winkel gegeben, kannst du fehlenden Größen mithilfe von Sinus, Kosinus und Tangens berechnen.

Wähle das passende Seitenverhältnis aus (Sinus, Kosinus oder Tangens) und stelle - falls nötig - die Formel um.
Übertrage die nachfolgenden Beispiele in dein Heft.


Beispiele:
Beispiel 1: eine Seite (Hypotenuse) und ein Winkel sind gegeben
Beispiel 1 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); c = 6,8 cm; = 56°
ges: a; b;

① Bestimme a:

sin α =   |∙c
a = sin α ∙ c
a = sin (56°)∙6,8

a 5,6 (cm)
② Bestimme b:

cos α =   |∙c
b = cos α ∙ c
b = cos (56°)∙6,8

b 3,8 (cm)
③ Bestimme β:

Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 56° - 90°

   = 34°


Anmerkungen:
Du kannst b auch mit dem Satz des Pythagoras bestimmen:
a² + b² = c² (denn a und b sind die Katheten, c ist die Hypotenuse im rechtwinkligen Dreieck)
b =
   =
   3,9 (cm) Der Wert ist ungenauer, da du mit dem gerundeten Wert von a weitergerechnet hast.

Du kannst β auch kürzer bestimmen mit

α + β = 90°, da γ = 90° ist. Ziehst du diese von 180° ab, so bleiben 90° übrig.



Beispiel 2: eine Seite (Kathete) und ein Winkel sind gegeben
Beispiel 2 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 8,4 cm; = 62,8°
ges: b; c;

① Bestimme c:

sin α =   |∙c
c ∙ sin α = a   |: sin α
c =
c =

   9,4 (cm)
② Bestimme b (mit tan α oder mit dem Satz des Pythagoras):

tan α =   |∙b
b ∙ tan α = a   |: tan α
b =
b =

   4,3 (cm)
③ Bestimme β:

Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 68,2° - 90°

   = 27,2°


Beispiel 3: zwei Seiten sind gegeben (Kathete und Hypotenuse)
Beispiel 4 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 6,3 cm; c = 9,1 cm
ges: b; α; β

① Bestimme c (Pythagoras):

a² + b² = c²  |
b =
b =

b 6,6 (cm)
② Bestimme den Winkel α :

sin α =   
sin α =   | sin-1

43,8°
③ Bestimme β:

Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 43,8° - 90°

   = 46,2°


Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den Winkel berechnest du mit der jeweiligen Umkehrfunktion sin-1, cos-1 bzw. tan-1 dem Taschenrechner wie die Bilder zeigen:

Taschenrechner Bild shift markiert.png
Taschenrechner Bild sin markiert rot.png
Taschenrechner Bild Bruchtaste.png
Taschenrechner Bild Pfeil und Klammer zu.png
Taschenrechner Bild Gleichzeichen markiert.png
Taschenrechner Bild shift.png
Taschenrechner Bild sin-1.png
Taschenrechner Bild sin-1 mit Bruch.png
Taschenrechner Bild sin-1 mit Klammer.png
Taschenrechner Bild sin-1 Ergebnis.png



Beispiel 4: zwei Seiten sind gegeben (beide Katheten)
Beispiel 3 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 6,5 cm; b = 3,4 cm
ges: c; α; β

① Bestimme c (Pythagoras):

a² + b² = c²  |
c =
c =

c 7,3 (cm)
② Bestimme den Winkel α :

tan α =   
tan α =   | tan-1

62,4°
③ Bestimme β:

Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 62,4° - 90°

   = 27,6°


Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den Winkel berechnest du mit der jeweiligen Umkehrfunktion sin-1, cos-1 bzw. tan-1 dem Taschenrechner wie die Bilder zeigen:

Taschenrechner Bild shift markiert.png
Taschenrechner Bild tan.png
Taschenrechner Bild Bruchtaste.png
Taschenrechner Bild Pfeil und Klammer zu.png
Taschenrechner Bild Gleichzeichen markiert.png
Taschenrechner Bild shift.png
Taschenrechner Bild tan-1.png
Taschenrechner Bild tan-1 Bruch.png
Taschenrechner Bild tan-1 Bruch mit Klammer zu.png
Taschenrechner Bild tan-1 Bruch Ergebnis.png



Die Videos fassen die Möglichkeiten der Berechnungen zusammen:


Übung 3

Löse die Aufgaben ausführlich im Heft, nutze die Schreibweisen der Beispiele. Übertrage die Planskizzen aus dem Buch in dein Heft.

  • S. 94 Nr. 1
  • S. 94 Nr. 2
  • S. 94 Nr. 3

a) Löse wie in Beispiel 1
b) Löse wie in Beispiel 2
c) Löse wie in Beispiel 4

d) Löse wie in Beispiel 3

Lösungen (der Größe nach sortiert)
2,9cm; 4,4cm; 5,7cm; 8,1cm; 12,2cm; 14,0cm;

29,7°; 37,7°; 52,3°; 60,3°; 60,5°; 62,6°

a) Löse wie in Beispiel 2
b) Löse wie in Beispiel 3
c) Löse wie in Beispiel 4

d) Löse wie in Beispiel 1

Lösungen (der Größe nach sortiert):
3,8cm; 5,7cm; 6,8cm; 7,8cm; 11,9cm; 14,1cm;

24,4°; 29,2°; 29,5°;57,5°; 60,8°; 65,6°
Löse wie in Beispiel 1

Lösungen:

3,731km; 4,952km


Übung 4

Zeichne zunächst eine Planskizze mit γ = 90° und markiere die gegebenen Größen. Berechne danach die fehlenden Größen. Notiere deine Rechnungen ausführlich. Buch

  • S. 95 Nr. 4

Rechtwinkliges Dreieck gamma 90°.png

a) Löse wie in Beispiel 1.
b) Löse wie in Beispiel 4.
c) Löse wie in Beispiel 3.
d) Löse wie in Beispiel 1.
e) Löse wie in Beispiel 2.
f) Löse wie in Beispiel 2.



2.2 Zusammenhang Steigung m und Steigungswinkel α

Du hast zu Beginn drei Möglichkeiten wiederholt, die Steigung z.B. einer Straße anzugeben.
In Prozent (mit p% = m), als Steigung m und mit dem Steigungswinkel α.
Mithilfe des Tangens kannst du nun zum einer Steigung m den zugehörigen Steigungswinkel α angeben und umgekehrt.
Steigungsdreieck mit Winkel.png
Steigung m =

m = und ebenfalls ist tan α = , also gilt

m = tan α

Berechne die Steigung m, wenn der Steigungswinkel α gegeben ist:

geg: α = 7°
ges: m
m = tan α
   = tan (7°)
   0,123

   = 12,3%
Berechne den Steigungswinkel α, wenn die Steigung m gegeben ist.

geg: m = 25% = 0,25
ges: α
tan α = m tan α = 0,25   |tan-1

 α = 14°



Übung 5

Löse die folgenden Aufgaben aus dem Buch. Zeichne zu jeder Aufgabe eine passende Skizze (rechtwinkliges Dreieck) und notiere deine Rechnungen vollständig und übersichtlich.

  • S. 96 Nr. 12
  • S. 96 Nr. 16

HIER WEITERARBEITEN

2.3 Anwendungsaufgaben


Übung 6

Löse die folgenden Aufgaben aus dem Buch. Zeichne zu jeder Aufgabe eine passende Skizze (rechtwinkliges Dreieck) und notiere deine Rechnungen vollständig und übersichtlich.

  • S. 96 Nr. 14
  • S. 96 Nr. 15
  • S. 97 Nr. 17
  • S. 97 Nr. 19


Materialsammlung: Übungen auf der Seite Aufgabenfuchs Übungen auf der Seite mathe-trainer