Benutzer:Buss-Haskert/Gleichungen/Was ist eine Gleichung: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 113: | Zeile 113: | ||
a) 7·x + 4 = 8·x <br> | a) 7·x + 4 = 8·x <br> | ||
für x = 2 gilt 7·2 + 4 = 8·2<br> | für x = 2 gilt 7·2 + 4 = 8·2<br> | ||
18 = 16 (f)<br> | 18 = 16 (f)<br> | ||
für x = 8 gilt 7·8 + 4 = 8·8<br> | für x = 8 gilt 7·8 + 4 = 8·8<br> | ||
60 = 64 (f)<br> | 60 = 64 (f)<br> | ||
für x = 4 gilt 7·4 + 4 = 8·4<br> | für x = 4 gilt 7·4 + 4 = 8·4<br> | ||
32 = 32 (w), also ist x = 4 die Lösung der Gleichung.<br> | 32 = 32 (w), also ist x = 4 die Lösung der Gleichung.<br> | ||
b) ...|2=Hinweis zur Schreibweise im Heft|3=Verbergen}} | b) ...|2=Hinweis zur Schreibweise im Heft|3=Verbergen}} | ||
Version vom 5. Mai 2021, 14:04 Uhr
SEITE IM AUFBAU!!
1.1) Was ist eine Gleichung?
1.2) Gleichungen lösen durch Probieren
1.3) Anwendungsaufgaben
1.1 Was ist eine Gleichung?
Kennst du eine Balkenwaage z.B. aus dem Physikunterricht oder vom Markt?
oder
Diese Waagen sind im Gleichgewicht, wenn das Gewicht auf beiden Seiten der Waage gleich groß ist.
In der Mathematik liegt auf jeder Seite der Waage ein Term (Rechenausdruck). Das Gleichgewicht stellen wir mit einem Gleichheitszeichen dar.
Du kennst Terme (Rechenausdrücke) aus dem vorangegangenen Kapitel. Nun verbindest du zwei Terme durch ein Gleichheitszeichen. Damit erhältst du eine Gleichung.
Ziel ist es, für die Variablen genau die Zahl zu finden, sodass auf beiden Seiten der Gleichung derselbe Wert steht. Dann ist die Waage im Gleichgewicht.
In jeder Tüte befinden sich gleich viele Klötzchen (x Stück).
Wie viele Klötzchen befinden sich in jeder Tüte, damit die Waage im Gleichgewicht ist?
1.2 Lösen durch Probieren
Du kannst die Gleichungen auch in der Simulation auf der Seite phet.colorado.edu nachstellen und deine Lösung prüfen.
Wähle dazu die Simulation VARIABLEN, stelle die Gleichung nach und prüfe deine Lösung, indem du für x den entsprechenden Wert einstellst (oben rechts).
Du setzt die Werte für x immer anstelle der Variablen ein. Dann rechnest du die beiden Seiten der Gleichung aus und prüfst, ob sie denselben Wert haben. Wenn dies der Fall ist, hast du die Lösung der Gleichung gefunden.
Beispiel:
x + 7 = 2·x + 1 für x = 2
2 + 7 = 2·2 + 1
9 = 5 (f)
Lösung der Gleichung:
x = 6, denn
x + 7 = 2·x + 1 für x = 6
6 + 7 = 2·6 + 1
Die Lösung einer Gleichung kann durch Probieren bestimmt werden:
Setze dazu für x verschiedene Zahlen ein. Prüfe, ob eine wahre (w) oder falsche (f ) Aussage entsteht.
Schreibweise:
a) 7·x + 4 = 8·x
für x = 2 gilt 7·2 + 4 = 8·2
18 = 16 (f)
für x = 8 gilt 7·8 + 4 = 8·8
60 = 64 (f)
für x = 4 gilt 7·4 + 4 = 8·4
32 = 32 (w), also ist x = 4 die Lösung der Gleichung.
Du benötigst 3 Spalten:
Spalte A: Werte von x; Spalte B: Wert der linken Seite der Gleichung; Spalte C: Wert der rechten Seite der Gleichung
1.3 Anwendungsaufgaben
Es gibt verschiedene Bereiche, in denen Gleichungen Anwendung finden:
Mathematische Texte
Addition: 1. Summand + 2. Summand = Wert derSumme
Subtraktion: Minuend - Subtrahend = Wert der Differenz
Multiplikation: 1. Faktor ∙ 2. Faktor = Wert des Produktes
Division: Dividend: Divisor = Wert des Quotienten
Addition | addieren | vermehren | plus | |
Subtraktion | subtrahieren | vermindern | minus | |
Multiplikation | multiplizieren | verdoppeln | vervielfachen | mal |
Division | dividieren | halbieren | teilen | geteilt |
Schreibe über den Aufgabentext die passenden Rechenzeichen. Dies hilft dir beim Aufstellen der Terme.
Geometrische Anwendungen
Quadrat | u = 4·a | A = a² | ||
Rechteck | u = 2a + 2b | A = a·b | ||
gleichschenkliges Dreieck | u = 2a + c | 2 gleich lange Seiten | α+β+γ=180° | |
gleichseitiges Dreieck | u = 3a | 3 gleich lange Seiten | α+β+γ=180° |
Sachsituationen
In allen Anwendungsbereichen ist es wichtig, dass du den Text genau liest, dir die Situation vorstellst und mit eigenen Worten beschreibst.