Benutzer:HAG-S15

Aus ZUM Projektwiki
Version vom 4. Mai 2024, 13:59 Uhr von Stoll-Gym10Erfurt (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Kimi -- Lineare Funktionen
Asdfghj.png
Wissen zu linearen Funktionen

Lerne etwas dazu


Übung in Learningsnacks


Ein kleiner Learningsnack von mir

Lineare Funktionen

Definition:

Lineare Funktionen sind eine grundlegende Art von mathematischen Funktionen, die in vielen Bereichen der Mathematik, Naturwissenschaften und Ingenieurwissenschaften Anwendung finden.

Anwendungen:

Lineare Funktionen finden sich in vielen realen Anwendungen, wie etwa bei Geschwindigkeits-Zeit-Diagrammen, Kostenfunktionen, Einkommensprognosen, Temperaturverläufen und mehr. Sie bieten eine einfache Möglichkeit, Beziehungen zwischen zwei Variablen zu modellieren.

Lineare Funktionen in einem Koordinatensystem

Stellen wir uns ein Koordinatensystem mit einer x-Achse und einer y-Achse vor. Eine lineare Funktion f(x) ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. Die Steigung m bestimmt den Winkel dieser Linie, während der y-Achsenabschnitt b bestimmt, wo die Linie die y-Achse schneidet.

Demnach ist die Formel also:f(x) = mx + b

Beispiel für Lineare Funktionen in einem Koordinatensystem:

f(x) = 2x + 3 hat eine Steigung von 2(m) und schneidet die y-Achse bei y=3(b). Die Linie steigt um 2 Einheiten(Kästchen) an, wenn x um 1 Einheit zunimmt.