Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen

Aus ZUM Projektwiki

Funktionen

Funktionen
Darstellungen von Funktionen.png
Eine Funktion ist eine eindeutige Zuordnung. Sie lässt sich auf verschiedene Arten darstellen:
  • als Text
  • als Wertetabelle
  • als Funktionsgleichung
  • als Graph

Lineare Funktionen

Hefteintrag - Lineare Funktionen erkennen

Eine Funktion, deren Funktionsgleichung die Form f(x) = mx + b hat, heißt lineare Funktion. Der Graph einer linearen Funktion ist immer eine Gerade mit der Steigung m und dem y-Achsenabschnitt b. Der Graph schneidet die y-Achse im Punkt P(0Ib).

Lineare Funktionen erkennen:

Lineare Funktionen erkennen Zusammenfassung.png


Übung: Lineare Funktionen erkennen
Entscheide in den folgenden Apps, ob die Funktion linear ist oder nicht. In der letzten App gib die Funktionsgleichung an oder lies m und b ab.

Lineare Funktionen: Wertetabelle

Wertetabelle erstellen

Berechne den y-Wert der Funktion, indem du den x-Wert in die Funktionsgleichung einsetzt.
Beispiel Bootsverleih: y = 2x + 5
Für x = 1 gilt: y = 2 · 1 + 5
                         = 7
Für x = 2 gilt: y = 2 · 2 + 5
                         = 9
Übertrage die Werte in die Wertetabelle:

x 0 1 2 3 4 ...
y 5 7 9 11 13 ...

Lineare Funktionen: Gleichung und Graph

Funktionsgraphen zeichnen

Trage die Punkte der Wertetabelle in ein Koordinatenkreuz ein und zeichne den Graphen der Funktion.
Erinnerung:"Zuerst nach rechts und dann nach oben, dann werde ich dich loben" bzw. "Zuerst Anlauf nehmen, dann hoch springen."
F(x)=2x+5 mit Punkten.png


Lineare Funktionen: Funktionsgleichung aufstellen
  • Lies den y-Achsenabschnitt b ab.
  • Zeichne das Steigungsdreieck und bestimme damit die Steiung m.
Beispiel 1 (leicht): m ist eine natürliche Zahl
Funktionsgleichung einer Geraden bestimmen m=2.png
Beispiel 2 (mittel): m ist eine negative ganze Zahl
Funktionsgleichung einer Geraden bestimmen m=-1,5.png
Beispiel 3 (schwer): m ist ein Bruch
Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png
Übung: Bestimmen der Funktionsgleichung einer Geraden
Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.
leicht (*)

mittel (**)

schwer (***)



Lineare Funktionen: Graph zeichnen
  • Zeichne den y-Achsenabschnitt b ein. P(0|b)
  • Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
  • Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.

Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.

Schritt 1Gerade zur Gleichung zeichnen Schritt 1.png
Schritt 2Gerade zur Gleichung zeichnen 2. Schritt.png
Schritt 3Gerade zur Gleichung zeichnen Schritt 3.png

Lineare Funktionen: Nullstellen bestimmen

Schnittpunkte mit den Koordinatenachsen

Für den Schnittpunkt Py mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b.

Py (0|b)

Für den Schnittpunkt N mit der x-Achse (Nullstelle) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.

N (xNI0)

Übersicht Schnittpunkte mit den Koordinatenachsen


Lineare Funktionen: Punktprobe

Punktprobe
Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(xIy) in die Funktionsgleichung f(x) = mx + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.


Quadratische Funktionen

Quadratische Funktionen: Nullstellen bestimmen

Quadratische Funktionen: Punktprobe