Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen

Aus ZUM Projektwiki


Info

In diesem Lernpfadkapitel lernst du

  • wie du von Pyramiden den Oberflächeninhalt schätzen kannst.
  • wie du von Pyramiden den Oberflächeninhalt berechnen kannst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Wiederholung

Info
Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Rechtecken und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, trage die Formeln direkt auf deinem Arbeitsblatt ein und starte bei "Oberflächeninhalte berechnen". Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben (Aufgaben 1,2,3,4, und 5).

Rechteckigen Flächeninhalt berechnen

Aufgabe 1: Flächeninhalt vom Rechteck

Berechne den Flächeninhalt des folgenden Quadrates (denke auch daran, die richtige Einheit anzugeben):


Dreieckigen Flächeninhalt berechnen

Aufgabe 2: Flächeninhalt vom Dreieck

Berechne den Flächeninhalt des folgenden Dreiecks (denke auch daran, die richtige Einheit anzugeben):



Falls du zu den beiden Themen weitere Aufgaben zur Wiederholung benötigst


Aufgabe 6: Formeln notieren

Grundlagen-bearbeiten.png Kehre nun zum Arbeitsblatt zurück und trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein (die vollständigen Formeln stehen jeweils unter "Tipp 2" in Aufgabe 1 und Aufgabe 2).

Oberflächeninhalte berechnen

Lies dir eine der folgenden Kurzgeschichten durch und löse anschließend den nachstehenden Arbeitsauftrag.

 


Aufgabe 6: Materialien berechnen

Überlege dir bei einer der Geschichten, wie man das Problem mathematisch lösen könnte. Schreibe deine Überlegungen auf und stell dir dabei vor, du müsstest deinen Arbeitgeber von deinen Überlegungen überzeugen.

Kannst du dein Vorgehen auch verallgemeinern und auf die anderen Probleme anwenden? Falls dir dies schwerfällt, schau dir genau den nächsten Abschnitt an!


Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Gitternetz überführen, indem man die Pyramide 'aufklappt' und die Seitenflächen auf eine Ebene projiziert.

Das so entstandene Gitternetz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.

Den Flächeninhalt des gesamten Gitternetzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.


Merksatz: Oberflächeninhalt

Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:

.

Die Mantelfläche besteht aus mehreren dreieckigen Seitenflächen. Die Anzahl dieser Seitenflächen ist gleich der Anzahl der Ecken der Grundfläche.

Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.


Beispiel: Oberflächeninhalt berechnen

Sei wie oben rechts eine Pyramide gegeben, mit einer Kantenlänge von und einer Seitenhöhe von .

Grundfläche G:

.

Seitenfläche A:

Mantelfläche M:

.

Oberfläche O:


Idee

Um Aufgabe 6 zu lösen, wäre somit ein geeigneter Ansatz, die Mantelfläche der pyramidenförmigen Gebilde zu berechnen. Anstatt die Materialien einzeln zu zählen, bedarf es demnach nur der Kantenlänge und der Seitenhöhe.


Aufgabe 7: Lückentext 'Rechteckige Pyramide'




Aufgabe 8: Oberflächeninhalte verschiedener Pyramiden berechnen

Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe 8 zum Einüben des Verfahrens. Grundlagen-bearbeiten.png


Aufgabe 9: Tetraeder?

Azra hat zur Berechnung an einer Pyramide mit dreieckiger Grundfläche sehr viele Größen gemessen, um auf alles vorbereitet zu sein. Allerdings sollte sie nur den Oberflächeninhalt berechnen.

Kevin erwidert, dass dies ja viel zu viel Arbeit sei, da man doch nur eine der Seitenflächen benötigt. Schnell berechnet er:

.

Stimmst du diesem Ergebnis zu oder war Kevin doch etwas zu voreilig? Berechne dazu selbst den Oberflächeninhalt und vergleiche dein Ergebnis!

Pyramiden schätzen

Im Alltag kommt es manchmal vor, dass man nicht alle Angaben kennt, die man zur Bestimmung der Oberfläche benötigt. In diesem Abschnitt kannst du deshalb üben, einzelne Angaben oder auch den gesamten Flächeninhalt zu schätzen. Dabei kommt es nicht so sehr darauf an, dass du immer komplett richtig schätzt (das wäre ja auch so gut wie unmöglich), sondern, dass du ein Gefühl für die Größen entwickelst.


Aufgabe 10: Oberfläche von Pyramiden schätzen

Ordne jedem Bild durch Schätzen den passenden Oberflächeninhalt zu (du musst hier nichts rechnen!):

Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Aufgabe 11: Oberfläche berechnen mit unbekanntem Parameter

Auf dem Bild rechts siehst du das Luxor Hotel und Casino. Es steht in Las Vegas und zeichnet sich vor allem durch seine Pyramidenform aus. Die Außenfassade besteht fast vollständig aus Glas und muss natürlich regelmäßig geputzt werden. Dafür soll eine neue Reinigungsfirma engagiert werden. Diese möchte aber vorab wissen, wie viele Quadratmeter circa zu putzen sind. Du weißt, dass das Gebäude hoch ist und breit.

a) Welche Angabe, die du zur genauen Berechnung der zu reinigenden Fläche benötigst, fehlt?

b) Berechne die Größe der zu reinigenden Fläche, indem du die fehlende Angabe schätzt.

Das Luxor Hotel und Casino spielte auch schon in Aufgabe 10 eine Rolle. Vergleiche dein Ergebnis mit der Lösung aus Aufgabe 10, um zu sehen, ob du gut geschätzt hast.


Aufgabe 12
Grundlagen-bearbeiten.png Kehre nun zum Arbeitsblatt zurück und bearbeite die Aufgabe 12.


Aufgabe 13: Oberfläche vom Louvre schätzen
Unter folgendem Link [[1]] findest du eine Streetview-Ansicht vom Louvre. Bestimme nun den Oberflächeninhalt der Glasfläche, indem du die benötigten Parameter vorerst schätzt.
Ob du gut geschätzt hast, siehst du im Kapitel 4 "Pyramiden verknüpfen".

Vertiefen und Vernetzen

In diesem Abschnitt findest du vertiefende Aufgaben zu dem Oberflächeninhalt von Pyramiden und darüber hinausgehenden Themen. Neben Pyramiden kommen in diesem Abschnitt auch weitere Körper bzw. Flächen vor, die du zum Teil bereits aus dem Unterricht kennst. Die Aufgaben sind als Knobelaufgaben gedacht, sodass du hier testen kannst, wie fit du im Umgang mit den Oberflächeninhalten von Pyramiden und ähnlichen Körpern bist.


Aufgabe 14: Zusammengesetzte Körper

Die 23 Schülerinnen und Schüler einer fünften Klasse sollen vor Weihnachten in der Schule eigene Nikolaushäuschen bauen, die einen quaderförmigen Körper mit einem Walmdach haben sollen. Ein Modell dieses Häuschens siehst du in dem GeoGebra-Applet abgebildet.

Folgende Daten soll das Häuschen haben: .

Berechne, wie viel Pappe die Lehrkraft mitbringen muss, wenn alle Schülerinnen und Schüler der Klasse ein Häuschen bauen sollen.


Aufgabe 15: Pyramidenstumpf
Slovak Radio Building

Das Slovak Radio Building in Bratislava (Slowakei) hat die Form eines umgedrehten quadratischen Pyramidenstumpfes. Das Gebäude soll eine neue Glasfassade sowie ein neues Glasdach erhalten, die aus Sicherheitsglas bestehen sollen. Das Gebäude ist an der unteren Kante breit, an der oberen Kante breit und ist hoch. Die Seitenhöhe der Fassade beträgt .

a) Berechne, wie viel Quadratmeter des Sicherheitsglases für die neue Fassade und das Dach benötigt werden. Runde auf zwei Stellen nach dem Komma.

b) Das Sicherheitsglas kostet im Handel ungefähr . Bei der Montage der Fassade werden immer einige Glasplatten beschädigt, sodass 2% mehr Glas gekauft wird, als eigentlich für die Fassade benötigt wird. Berechne, wie hoch die Materialkosten sind, die für die neue Fassade entstehen.


Aufgabe 16: Tipi
Tipi

Für ein Tipi-Modell soll eine Plane hergestellt werden. Das Tipi ist in der Abbildung rechts maßstabsgetreu abgebildet. Zur Vereinfachung kannst du annehmen, dass das Tipi die Form einer regelmäßigen achteckigen Pyramide hat, die an einer der Seitenflächen eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.

Berechne, wie viel Quadratmeter Zeltplane für ein Tipi benötigt wird.