Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen

Aus ZUM Projektwiki

Bauarbeiter.jpg

Dieser Lernpfad befindet sich aktuell im Aufbau.

Info

In diesem Lernpfadkapitel lernst du

  • wie du von Pyramiden den Oberflächeninhalt schätzen kannst.
  • wie du von Pyramiden den Oberflächeninhalt berechnen kannst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Wiederholung(Optional)

Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Quadraten und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, trage die Formeln direkt auf deinem Arbeitsblatt ein und starte bei "Oberflächeninhalte berechnen". Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben.

Quadratischen Flächeninhalt berechnen

Aufgabe 1: Flächeninhalt vom Quadrat

Berechne den Flächeninhalt des folgenden Quadrates:

Gib im zweiten Kästchen die richtige Einheit an.
Die Formel zur Berechnung eines quadratischen Flächeninhalts lautet:
Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"
Info
Übertrage die Formel zur Berechnung eines quadratischen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").

Dreieckigen Flächeninhalt berechnen

Aufgabe 2: Flächeninhalt vom Dreieck

Berechne den Flächeninhalt des folgenden Dreiecks:

Gib auch hier im zweiten Kästchen die richtige Einheit an.
Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:
Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"
Info
Übertrage die Formel zur Berechnung eines dreieckigen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").

Falls du zu den beiden Themen weitere Aufgaben zur Wiederholung benötigst, klicke hier

Aufgabe 3: Quadratische Flächeninhalte berechnen

a)

b)

c)

a)

b)

c)


Aufgabe 4: Dreieckige Flächeninhalte berechnen


a)

b)

c)

a)

b)

c)


Aufgabe 5: Dreieckige Flächeninhalte berechnen Teil 2


a)

b)

c)

a)

b)

c)

Oberflächeninhalte berechnen

Pyramiden im Alltag

Lies dir eine der folgenden Kurzgeschichten durch und löse anschließend den nachstehenden Arbeitsauftrag.

Louvre_Museum_(228021559)

1981 initiierte der damalige französische Staatspräsident das Projekt „Grand-Louvre“. Im Rahmen dessen wurde der Architekt Ieoh Ming Pei beauftragt, die heutige Glaspyramide im Zentrum des Palastes zu entwickeln. Die Blaupause steht und die Vision ist klar: Die Pyramide soll komplett mit Glas umfasst werden! Nun geht es darum zu ermitteln, wie viele der rautenförmigen Glasscheiben hergestellt werden müssen.

Kheops-Pyramid.jpg

Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Die höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend Steine gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.

Münster, St.-Paulus-Dom -- 2019 -- 3536

Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmspitzen wieder mit neuen Dachziegeln belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
 


Aufgabe 6: Materialien berechnen

Überlege dir bei einer der Geschichten, wie man das Problem mathematisch lösen könnte. Schreibe deine Überlegungen auf und stell dir dabei vor, du müsstest deinen Arbeitgeber von deinen Überlegungen überzeugen.

Kannst du dein Vorgehen auch verallgemeinern und auf die anderen Probleme anwenden? Falls dir dies schwer fällt, schau dir genau den nächsten Abschnitt an!


Formel aufstellen

Schrägbild einer Pyramide mit angegebener Kantenlänge und Seitenhöhe
Gitternetz einer Pyramide mit angegebener Kantenlänge und Seitenhöhe.

Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Gitternetz überführen, indem man die Pyramide 'aufklappt' und die Seitenflächen auf eine Ebene projiziert.

Das so entstandene Gitternetz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.

Den Flächeninhalt des gesamten Gitternetzes nennt man den Oberflächeninhalt .


Merksatz: Oberflächeninhalt

Der Oberflächeninhalt einer Pyramide lässt sich durch die Summe ihrer Grundfläche und ihrer Mantelfläche berechnen. Als Formel ergibt sich somit:

.

Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleichgroßen Dreiecken.


Beispiel: Oberflächeninhalt berechnen

Sei wie rechts eine Pyramide gegeben mit einer Kantenlänge von und einer Seitenhöhe von .

Grundfläche G:

.

Seitenfläche A:

Mantelfläche M:

.

Oberfläche O:

Um Aufgabe 6 zu lösen wäre somit ein geeigneter Ansatz, die Mantelfläche der pyramidenförmigen Gebilde zu berechnen. Anstatt die Bestandteile einzeln zu zählen bedarf es demnach nur der Kantenlänge und der Seitenhöhe.

Problem mit überflüssigen Informationen: Extrahieren von relevanten Daten

Schülerlösungen vorstellen und bewerten lassen

Lösung: Diese ist/sind richtig

Übungsaufgaben

Aufgaben, die einen digitalen Mehrwert haben

Übungsaufgaben mit Schwierigkeitsstufen (Dezimalbrüche, Maßeinheiten, Perspektive, ...) auf Arbeitsblatt

//Arbeitsblatt: Sicherung durch "Abschreiben" der Formel

Pyramiden schätzen

Einschätzungsaufgabe - Memory

Verschiedene Schwierigkeitstypen zum Schätzen (1. einen Parameter + Formel, 2. keine Vorgaben mehr <-- aufs Arbeitsblatt, 3. Streetview link vom Louvre)

Vertiefen und Vernetzen

Aufgabe x: Pyramidenstumpf
Slovak Radio Building

Das Slovak Radio Building in Bratislava (Slowakei) hat die Form eines umgedrehten quadratischen Pyramidenstumpfes. Die Seiten sowie das Dach des Gebäudes sollen eine neue Glasfassade erhalten, die aus 12 mm starkem Sicherheitsglas bestehen soll. Das Gebäude ist an der unteren Kante 22,59 Meter breit, an der oberen Kante 74,33 Meter breit und ist 42,7 Meter hoch. Die Seitenhöhe der Fassade beträgt 49,7 Meter.

a) Berechne, wie viel Quadratmeter des 12 mm starken Glases für die neue Fassade und das Dach benötigt werden. Runde auf zwei Stellen nach dem Komma.

b) Das Sicherheitsglas kostet im Handel ungefähr 75 €/m². Bei der Montage der Fassade werden immer einige Glasplatten beschädigt, sodass 2% mehr Glas gekauft wird, als eigentlich für die Fassade benötigt wird. Berechne, wie hoch die Materialkosten sind, die für die neue Fassade entstehen.

Die Seitenflächen des Gebäudes sind trapezförmig.
Die Formel für die Berechnung des Flächeninhaltes eines Trapezes lautet:

Wir berechnen die Lösung nach der oben aufgestellten Formel:

Die Mantelfläche besteht hier aus vier identischen Trapezen, mit den Kantenlängen und der Höhe . Es gilt somit für die Mantelfläche:

.

Die Grundfläche ist in diesem Fall das Dach des Gebäudes, welches ebenfalls aus Glas bestehen soll:

Zusammen gilt dann:

Es werden insgesamt Sicherheitsglas benötigt.

Wir berechnen zunächst die zu bestellende Glasmenge: Nun folgt für den Materialpreis:

Das Material für die neue Fassade kostet insgesamt


Aufgabe y: Tipi
Tipi

Für ein Tipi-Modell soll eine Plane hergestellt werden. Das Tipi hat die Form einer sechseckigen Pyramide, die an einer Seite eine halbrunden Öffnung enthält. Der Boden des Tipis wird nicht mit einer Plane ausgekleidet.

[Daten für die Aufgabe:

Seitenhöhe des Tipis: m

Kantenlänge des Achtecks: dm

Ausgeschnittener Halbkreis mit Radius: cm]

Berechne, wie viel Zeltplane für ein Tipi benötigt wird.

Hier steht der Tipp.
Hier steht die Lösung.


Aufgabe z: Zusammengesetzte Körper


zusammengesetzte Körper (Dachstuhl/Fachwerkhaus/Kirchturm)

??? Nikolaushäuschen (Quader mit Pyramidendach) selbst gebaut (Frage: Wie viel Pappe braucht man, wenn alle SuS einer Klasse ein Häuschen bauen sollen?, Verschnitt 20% miteinrechnen) ???

Hier steht ein Tipp.
Hier steht die Lösung.