Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum
In diesem Lernpfadkapitel beschäftigst du dich mit Punkten und Vektoren im Raum. Du lernst die Grundlagen zum Thema Punkte und Vektoren. Dies Beinhaltet die Unterscheidung dieser beiden Begriffe, das Rechnen, Interpretieren und Anwenden im Sachzusammenhang.
Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:
- Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
- und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Inhaltsverzeichnis
Wiederholung von Punkten und Vektoren
Jeder Punkt lässt sich durch den Vektor beschreiben, der den Ursprung auf diesen Punkt verschiebt, den Ortsvektor. Bei Punkten werden die Koordinaten direkt an den Namen des Punktes geschrieben, der Name des Punktes wird immer groß geschrieben; bei Vektoren, also auch bei Ortsvektoren, werden die Koordinaten durch ein Gleichheitszeichen vom Namen des Vektors getrennt, der Name des Vektors wird manchmal mit einem Pfeil darüber versehen und meistens klein geschrieben.
Zum Punkt gehört also der Ortsvektor .Koordinatensystem
Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben.
- Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3.
- Zeichne die Punkte ,, und in das gezeichnete Koordinatensystem. Zeichne nun die Verbindungsvektoren , , und ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn.
- Nutze den Punkt aus Aufgabenteil 2. Füge die Punkte ,, und . Zeichne nun die Verbindungsvektoren ,, , , , , und ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn.
Punkte in einem dreidimensionalen Koordinatensystem kannst du mithilfe eines "Pfad-Folge-Verfahren" genau bestimmen. Dabei geht man die durch die Punktkoordinaten angegeben Längeneinheiten in die Richtung der jeweiligen Achsen. Es entsteht einen Koordinatenzug. Das folgende Bild verdeutlicht das Verfahren.
Die abgebildete Pyramide besitzt einen Eckpunkt im Nullpunkt . Die quadratische Grundfläche der Pyramide liegt dabei in der --Ebene und die Spitze der Pyramide liegt 6 Längeneinheiten über der Grundfläche.
Vektoren als Verschiebungen
Rechnen mit Vektoren
Wir definieren zwei Rechenoperationen für Vektoren: das Bilden des Vielfachen und der Summe. Die Vektoraddition bezeichnet das Bilden der Summe zweier Vektoren gleichen Typs. Gleichen Typs heißt, dass die beiden Vektoren gleich viele Komponenten haben. Man bildet die Summe, indem man die Komponenten der Vektoren komponentenweise addiert. Wir können uns die Addition von Vektoren als ein „Aneinanderlegen“ von zwei Pfeilen von ggf. verschiedener Länge vorstellen. Wenn wir und als Pfeile deuten, bedeutet die Addition, dass wir die Pfeile hintereinanderlegen, so dass der Anfang von und die „Spitze“ von übereinstimmen. Eine derartige Verwendung von Pfeilen ist aus der Physik bekannt. Dort werden oftmals Kräfte und Geschwindigkeiten mit Pfeilen dargestellt. Man kann am Ende zur Addition sagen, dass das Bilden der Summe zweier Vektoren als Hintereinander-Ausführen der durch und dargestellten Verschiebungen gesehen werden kann.
Das Bilden des Vielfachen eines Vektors wird auch als Multiplikation mit einem Skalar bezeichnet. Wir nennen unseren Vektor wieder und das Skalar bezeichnen wir mit . Von jedem Vektor kann das -Fache gebildet werden, indem alle Komponenten von mit multipliziert werden. Ist so wird der „Pfeil“ von um den Faktor gestreckt (falls ) oder gestaucht (falls ). Ist , so erhält der Pfeil, der um den Faktor gestreckt oder getaucht wird, noch eine Richtungsumkehrung. Für den Fall sprechen wir dann vom Gegenvektor von .
Wir nennen zwei Vektoren kollinear (oder parallel), wenn einer der Vektoren ein Vielfaches des anderen ist. Mit anderen Worten: Wenn und zwei verschiedene Vektoren sind, so sind sie parallel/kollinear zueinander, falls ein Skalar existiert, sodass gilt: . Dabei ist es egal, ob die beiden Vektoren in verschiedene Richtungen zeigen oder nicht.
Kollinearität von Vektoren
Länge und Abstände von Vektoren
Geometrische Objekte untersuchen
In einem kartesischen Koordinatensystem sind die Punkte , und gegeben.