Schon im alten Ägypten (lange vor Pythagoras9), gab es Seilspanner, die mithilfe eines 12-Knoten-Seils Felder rechtwinklig einteilen konnten.
Probiere es aus: Teile ein Seil in 12 gleich lange Teile und mache jeweils einen Knoten bzw. markiere die Stelle des Seils farbig. Spanne nun das Seil so, dass du 5 Teile unten (Hypotenuse) und jeweils 3 bzw. 4 Teile an den Seiten (Katheten) hast.
Was beobachtest du?
Prüfe deine Beobachtung mithilfe des nachfolgenden Applets.
Applet von Pöchtrager
Was hat das mit dem Satz des Pythagoras zu tun?
2.2 Satz des Pythagoras
Applet von Pöchtrager
Satz des Pythagoras
In jedem rechtwinkligen Dreieck ist das Quadrat über der Hypotenuse genauso groß wie die Summe der Quadrate über den Katheten.
Für ein rechtwinkliges Dreieck mit dem rechten Winkel γ (γ=90°) heißt der Satz des Pythagoras
a² + b² = c².
Überprüfe die Aussage des Satzes von Pythagoras mithilfe des nachfolgenden Applets.
Applet von Pöchtrager
Zerlegungsbeweise
Es gibt viele Möglichkeiten, den Satz des Pythagoras zu beweisen. Die nachfolgenden GeoGebra-Applets nutzen die Zerlegungsmethode, d.h. die Quadrate über den Katheten werden so zerlegt, dass sie neu zusammengelegt das Hypotenusenquadrat ergeben. Erkläre jeweils!
Beweis Nr. 1:
Applet von J. Mil
Beweis Nr. 2:
Applet von B.Lachner
Beweis Nr. 3:
Applet von Pöchtrager
Beweis Nr. 4:
Auch im Lied von Dorfuchs findest du einen Beweis für den Satz des Pythagoras:
Löse die Aufgaben aus dem Buch. Übertrage die Skizze in dein Heft, markiere die Hypotenuse rot und formuliere den Satz des Pythagoras. (Achte darauf, dass deine Skizze ein rechtwinkliges Dreieck ist.)
S. 111 Nr. 2
S. 111 Nr. 3
In Nr. 3 gibt es jeweils 3 rechtwinklige Dreiecke pro Figur, das große gesamte Dreieck mit den Katheten x und y und der Hypotenuse (z+w) und die zwei kleinen Dreiecke mit jeweils der Seite y als Kathete.
2.3 Fehlende Seitenlängen in rechtwinkligen Dreiecken berechnen mit dem Satz des Pythagoras
Fehlende Seitenlängen berechnen
Mithilfe des Satzes von Pythagoras lassen sich in rechtwinkligen Dreiecken fehlende Seitenlängen berechnen. Übertrage die Beispiele in dein Heft
Beispiel 1: Die Katheten sind gegeben und die Hypotenuse ist gesucht.
geg: rechtwinkliges Dreieck mit γ=90°; Katheten: a = 4cm; b = 6cm
ges: Hypotenuse c
c² = a² + b² |
c = |Werte einsetzen
c = |berechnen
(c = diesen Schritt musst du nicht notieren)
c 7,2 [cm]
Beispiel 2: Die Hypotenuse und eine Kathete sind gegeben und die andere Kathete ist gesucht.
geg: rechtwinkliges Dreieck mit γ=90°; Kathete: a = 14cm; Hypotenuse c = 17,5cm
ges: Kathete b
a² + b² = c² |-a²
b² = c² - a² |
b = |Werte einsetzen
b = |berechnen
(b = diesen Schritt musst du nicht notieren)
b = 10,5 [cm]
Hinweis zum Runden: Runde auf so viele Nachkommastellen, wie die Werte in der Aufgabenstellung haben.
Danach bearbeite die Aufgaben in den GeoGebra-Applets.
Übungen (GeoGebra-Applets von Pöchtrager)
Übung 4
Löse die Aufgaben aus dem Buch. Gehe dabei schrittweise vor:
1. Schritt: Prüfe, dass das Dreieck rechtwinklig ist.
2. Schritt: Entscheide, welche Seiten die Katheten und welche Seite die Hypotenuse ist.
3. Schritt: Notiere im Heft geg:... und ges:... wie in den Beispielen oben.
4. Schritt: Berechne dann wie in den Beispielen oben. Notiere vollständig und runde richtig.
S. 111 Nr. 4
S. 111 Nr. 5
S. 111 Nr. 6 (mit Skizze!)
S. 111 Nr. 7 (mit Skizze!)
In Aufgabenteil a) ist eine Kathete 4cm lang, von der anderen Kathete kennst du nur das Quadrat (20cm²). Gesucht ist die Hypotenuse x.
x² = 4² + 20 (20 ist schon das Quadrat der zweiten Kathete)
x =
x = 6 [cm]
In Aufgabenteil c) sind die Katheten gleich lang, das Quadrat der Hypotenuse ist gegeben.
50 = x² + x²
50 = 2x² |:2
25 = x²
...
Um x zu berechnen, teile das Deieck in zwei rechtwinklige Teildreiecke ein (wie in der Skizze gegeben) und berechne die einzelnen Teilstrecken x1 und x2. x = x1 + x2
Übung 5: Umkehrung des Satzes von Pythagroas
Mit der Umkehrung des Satzes von Pythagoras kannst du prüfen, ob ein Dreieck rechtwinklig ist:
Prüfe, ob die Summe der Quadrate der kürzeren Seiten genauso groß sind wie das Quadrat der längsten Seite.
Prüfe also, ob a² + b² = c² gilt (mit a und b kürzere Seiten, c längste Seite).
Wenn du eine wahre Aussage erhältst, ist das Dreieck rechtwinklig.
S. 111 Nr. 8
a) a und b sind die kürzeren Seiten, c ist die längste Seite.
a² + b² = c²
8² + 15² = 17²
289 = 289 (w)
Also ist das Dreieck rechtwinklig.
Übung 6: Besondere Figuren konstruieren mit Pythagoras
Konstruiere die "Pythagoras-Schnecke", wie im Buch gezeigt.
S. 112 Nr. 9
Eine weitere besondere Figur, die mit dem Satz des Pythagoras konstruiert wird, ist der Pythagoras-Baum. Die Konstruktion zeigt das nachfolgende Applet. Erkläre!
(Appelt von Pöchtrager)
Übung 7: Pythagoreische Zahlen
Rechtwinklige Dreiecke mit natürlichen Zahlen als Seitenlängen heißen pythagoreische Zahlen. Ein Beispiel hast du beim 12-Knoten-Seil kennengelernt.
Hier gilt: 3² + 4² = 5² (alle Zahlen sind natürlichen Zahlen).
Löse Buch
S. 112 Nr. 11
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.