Digitale Werkzeuge in der Schule/Fit für VERA-8/Stochastik

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel kannst du deine Kenntnisse in der Stochastik verbessern und vertiefen. Kurzbeschreibung des Aufbaus. Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Viel Erfolg!

Absolute und relative Häufigkeit

Was ist die absolute Häufigkeit?
Die absolute Häufigkeit misst, wie oft ein bestimmtes Ereignis in einer Umfrage ausgewählt wird oder in einem Versuchsdurchgang auftritt. Daher wird die absolute Häufigkeit auch umgangssprachlich als Ergebnis einer Zählung bezeichnet. Die absolute Häufigkeit kann nur Werte aus den natürlichen Zahlen, einschließlich der 0, annehmen.


Beispiel zur absoluten Häufigkeit
Ein gutes Beispiel, um absolute Häufigkeit zu erklären, ist das mehrmalige Werfen eines Würfels. Wenn ein Würfel 100 mal geworfen wird und 22 mal die Würfelzahl 6 herauskommt, folgt daraus, dass die absolute Häufigkeit für das Ereignis 6 die 22 ist.


Was ist die relative Häufigkeit?
Die relative Häufigkeit bezeichnet den Anteil der absoluten Häufigkeit (Anzahl) eines Ereignisses an der gesamten Stichprobe. Dieser Anteil wird entweder als Bruch dargestellt oder als Prozentwert angegeben.


Beispiel zur relativen Häufigkeit

Bei 100 Würfen mit einem Würfel wird 22 mal die Würfelzahl 6 notiert. Die absolute Häufigkeit beträgt also 22 für die Würfelzahl 6. Um nun die relative Häufigkeit zu bestimmen, wird die absolute Häufigkeit durch die gesamte Anzahl an Würfelwürfen dividiert. In diesem Fall rechnet man: = 0,22

Die relative Häufigkeit, dass eine 6 gewürfelt wurde, hat einen Anteil von von der gesamten Würfelrunde und dadurch einen Prozentanteil von 22,00% = 0,22 \cdot 100,00%.


Aufgabe 1: Münsteraner Marktplatz

Auf dem Münsteraner Marktplatz wird eine Umfrage zum Thema Lieblingshandymarke durchgeführt.

36 Personen beantworteten die Frage mit „Apple“, 18 Personen mit „Samsung“, 23 Personen mit „Huawei“, 15 Personen mit „HTC“ und 8 Personen mit „LG“. 10 Personen gaben an, dass ihnen die Handymarke nicht wichtig ist.

a) Fülle die Tabelle vollständig aus. Beachte, dass du den Bruch in folgender Form a/b eintippen musst.

Absolute Häufigkeit Relative Häufigkeit
Handymarke Anzahl der Personen Anteil Prozent
Apple
36()
36/110()
32,73%()
Samsung
18()
18/110()
16,36%()
Huawei
23()
23/110()
20,91%()
LG
8()
8/110()
7,27%()
HTC
15()
15/110()
13,64%()
nicht wichtig
10()
10/110()
9,09%()
Gesamt
110()
110/110()
100,00%()
Die richtigen Zahlen für die absolute Häufigkeit findest du im Aufgabentext.
Die richtigen Anteilswerte erhälst du, wenn du die Anzahl der Personen und die Gesamtzahl in einem Bruch aufschreibst.
Für die Berechnung der Prozentzahlen nutzt du deinen Taschenrechner und dividierst die berechneten Anteile durch die Gesamtzahl.
Denk an das richtige Runden der Nachkommastellen. Die Zahl 17,455% solltest du auf 17,46% runden. Bei der Zahl 17,454% musst du abrunden auf 17,45%.
Handymarke-Lösung.jpg

b) Die 3 Bilder zeigen unterschiedliche Säulendiagramme.

Säulendiagramm 1:

Diagramm1-2.jpg

Säulendiagramm 2:

Diagramm1-1.jpg

Säulendiagramm 3:

Diagramm1-3.jpg

Welches der 3 Bilder zeigt das richtige Säulendiagramm für die absoluten Häufigkeitswerte zur Handyumfrage?

Bild 1
Bild 2
Bild 3


Aufgabe 2: Lieblingssportart

Vervollständige die Tabelle:

Lieblingssportart Absolute Häufigkeit Relative Häufigkeit
Fußball 23
38,33%()
Schwimmen
9()
15,00%
Reiten
10()
16,67%()
Basketball
12()
20,00%
Leichtathletik
6()
10,00%
Gesamt 60
100,00%()
Denk an das richtige Runden der Nachkommastellen. Die Zahl 17,456% solltest du auf 17,46% runden. Bei der Zahl 17,454% musst du abrunden auf 17,45%.
Lieblingssportart-Lösung-1.jpg


Aufgabe 3: TV Sender

Betrachte die durchgeführte Umfrage nach den beliebtesten TV-Sendern.

Absolute() Häufigkeit
Relative() Häufigkeit
TV-Sender Anzahl der Personen Anteil Prozent
ARD 10
10/130()
7,69%()
RTL 35
35/130()
26,92%()
ProSieben 42
42/130()
32,31%()
ZDF 14
14/130()
10,77%()
KabelEins 27
27/130()
20,77%()
Eurosport 2
2/130()
1,54%()
Gesamt
130()
130/130()
100,00%()

Trage die Ergebnisse aus den einzelnen Teilaufgaben in das richtige Feld in der Tabelle ein. Für eine richtige Lösung der Anteile, musst du den Bruch in folgender Form a/b eintippen.

a) In welchen Tabellenfeldern fehlen die Begriffe „relative“ und „absolute"?
b) Wie viele Personen wurden insgesamt befragt?
c) Gib die Anteile und Prozentwerte der relativen Häufigkeit für jeden TV-Sender an. Runde dabei auf 2 Nachkommastellen.

Die richtigen Anteilswerte erhälst du, wenn du die Anzahl der Personen und die Gesamtzahl in einem Bruch aufschreibst.
Für die Berechnung der Prozentzahlen nutzt du deinen Taschenrechner und dividierst die berechneten Anteile durch die Gesamtzahl.
Denk an das richtige Runden der Nachkommastellen. Die Zahl 17,455% solltest du auf 17,46% runden. Bei der Zahl 17,454% musst du abrunden auf 17,45%.
TVSender-Lösung.jpg


Aufgabe 4: Hotelbewertung

Nach einem Hotelurlaub vergibt jede Person der 40-köpfigen Reisegruppe zur Bewertung eine Note für das Hotel. Es können die Noten 1 bis 6 vergeben werden. Die Note „sehr gut“ vergeben der Reisegruppe. Die anderen Noten sind wie folgt verteilt:
„gut“
„befriedigend“
„ausreichend“
„mangelhaft“
Die Note „ungenügend“ vergibt keiner der Reisenden.
a)   In der Tabelle fehlen die Begriffe. Ordne sie richtig zu.

Absolute Häufigkeit Relative Häufigkeit
Note Anzahl der Personen Anteil Prozent
1 = "sehr gut"
2 = "gut"
3 = "befriedigend"
4 = "ausreichend"
5 = "mangelhaft"
6 = "ungenügend"
Gesamt
Lösung 4a.jpg


Hamburg-090612-0163-DSC 8260 retouched.jpg


b) Trage die in der Aufgabe genannten Anteile je Note in die Tabelle ein. Erweitere die Brüche dabei auf den Nenner 40. Berechne anschließend die Anzahl der Personen je Note und die dazu passende Prozentzahl. Trage auch diese Werte in die Tabelle ein.

Absolute Häufigkeit Relative Häufigkeit
Note Anzahl der Personen Anteil Prozent
1 = "sehr gut"
5()
5/40()
12,50%()
2 = "gut"
18()
18/40()
45,00%()
3 = "befriedigend"
10()
10/40()
25,00%()
4 = "ausreichend"
6()
6/40()
15,0%()
5 = "mangelhaft"
1()
1/40()
2,50%()
6 = "ungenügend"
0()
0/40()
0,00%()
Gesamt
40()
40/40()
100,00%()


Lösung-4b.jpg

c) Zeichne ein Säulendiagramm, welches die absoluten Werte der Umfrage darstellt.

Diagramm4-1.jpg


Aufgabe 5: Verkehrszählung

Julian und Max haben eine Verkehrszählung vor ihrer Haustür gemacht. Leider sind die Zettel mit den Strichlisten verloren gegangen. Max weiß aber noch, dass sie 8 Busse gezählt haben.

PKW LKW Bus Motorrad Fahrrad
45% 15% 10% 5% 25%
36()
12()
8()
4()
20()


a) Trage die fehlenden Fahrzeuganzahlen in die richtigen Felder der Tabelle.

Tabelle-5a.jpg


b) Wie viele Fahrzeuge haben Max und Julian insgesamt gezählt?

Max und Julian haben insgesamt 80() Fahrzeuge gezählt.
Max und Julian haben insgesamt 80 Fahrzeuge gezählt.


Zufallsexperimente

Für die nächsten Aufgaben benötigst du Stift, Papier und Taschenrechner. Bitte runde Dezimalzahlen auf 2 Nachkommastellen.


Zufallsexperimente
Bei Zufallsexperimenten muss zunächst geschaut werden, wie viele mögliche Ereignisse es gibt. Anschließend schaut man, bei wie vielen der Ereignisse ein bestimmter Fall eintritt. Die Wahrscheinlichkeit berechnet sich dann aus .


Baumdiagramme

Zur Darstellung von Wahrscheinlichkeiten hilft es meist, ein Baumdiagramm zu zeichnen. Hierbei wird für jedes Ereignis ein Pfad gezeichnet. Entlang der Pfade stehen die jeweiligen Wahrscheinlichkeiten.

Baumdiagramm Allgemein.jpg


Aufgabe 1: Klassendienste

In einer Klasse sind 14 Jungen und 13 Mädchen. Es werden Beauftragte für verschiedene Klassendienste gelost.

a) Für den Blumendienst wird eine Person gelost. Wie groß ist die Wahrscheinlichkeit, dass es ein Junge ist?

Zeichne ein Baumdiagramm. Was sind die Ereignisse?

Zeichnet man ein Baumdiagramm, so gibt es zwei Ereignisse:

1. Ein Junge wird gelost.

2. Ein Mädchen wird gelost.

Die Wahrscheinlichekeiten ergeben sich aus den absoluten Häufigkeiten, also der tatsächlichen Anzahl an Jungen und Mädchen geteilt durch die Anzahl der Schülerinnen und Schüler in der Klasse. Das Baumdiagramm sieht dann so aus:

Baumdiagramm A1 a.jpg
Die Wahrscheinlichkeit, dass ein Junge den Dienst bekommt, liegt also bei .

b) Auch der Tafeldienst wird gelost, jedoch hat die Lehrperson nun auch einen Zettel mit ihrem Namen hinzugefügt. Wie groß ist die Wahrscheinlichkeit, dass sie den Tafeldienst machen muss?

Wie viele Personen stehen nun zur Auswahl?
Zeichne ein Baumdiagramm. Wie viele Ereignisse gibt es?

Wenn man ein Baumdiagramm zeichnet, so müssen 3 Ereignisse dargestellt werden:

1. Ein Junge wird gelost.

2. Ein Mädchen wird gelost.

3. Die Lehrperson wird gelost.

Auch hier ergeben sich die Wahrscheinlichen aus den absoluten Häufigketen. Hierbei muss allerdings darauf geachtet werden, dass nicht nur die Anzahl der Schülerinnen und Schüler als gesamte Menge betrachtet wird, sondern auch die Lehrperson hinzu addiert wird. Es stehen also insgesamt 28 Personen zur Auswahl. Das Baumdiagramm sieht so aus:

Baumdiagramm A1 b.jpg
Die Wahrscheinlichkeit dafür, dass die Lehrperson selbst die Tafel putzen muss, liegt bei .


Komplementärregel

Hat ein Experiment genau zwei EReignisse, so spricht man von Ereignis und Gegenereignis. Die Wahrscheinlichkeiten der beiden ergeben in der Summe 1:


Aufgabe 2: Schulfest

Bei eurem Schulfest gibt es eine Tombola. Es geht darum, aus einem Glas eine Kugel zuziehen. Bevor du ohne hinzuschauen ziehen darfst, wird dir einmal der Inhalt des Glases gezeigt, du zählst die Kugeln. Außerdem steht ein Schild neben der Urne (Abbildung 2). Du kannst auf die Bilder klicken, um sie in vergrößerter Form zu sehen.

Abbildung 1
Abbildung 2
Es sind 20 blaue Kugeln, 12 rote, 9 gelbe und 3 grüne.

Nun ziehst du ohne hinzuschauen eine Kugel.

a) Wie groß ist die Wahrscheinlichkeit, dass du einen Stift gewinnst (gelbe Kugel)? Gib die Lösung in Prozent an.

Zeichne ein Baumdiagramm. Wie viele Ereignisse gibt es?

Hier kann man das Baumdiagramm auf 2 Arten zeichnen.

Man kann eines mit 4 Ereignissen zeichnen:

1. Die Kugel ist grün.

2. Die Kugel ist gelb.

3. Die Kugel ist rot.

4. Die Kugel ist blau.

Die Wahrscheinlichkeit errechnet sich dann aus der absoluten Häufigkeit der Kugeln. Das Baumdiagramm sieht dann so aus:

Baumdiagramm A2 a.jpg

Optional kann man man eines mit 2 Ereignissen zeichnen:

1. Die Kugel ist gelb.

2. Die Kugel ist nicht gelb.

Die Wahrscheinlichkeit dafür, dass die Kugel gelb ist, ergibt sich dann aus der absoluten Häufigkeit der gelben Kugeln. Die Wahrscheinlichkeit dafür, dass die Kugel nicht gelb ist efolgt aus der Komplementärregel.

Das Baumdiagramm sieht dann so aus:

Baumdiagramm A2 a alternativ.jpg

Rechne das nun in Prozent um: Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \tfrac{9}{44} \approx 0,2045 = 20,45 %.}

Die Wahrscheinlichkeit einen Stift zu gewinnen liegt bei 20,45%.

b) Oben auf dem Plakat steht: "Hier ist Gewinnen wahrscheinlicher, als Verlieren!". Stimmt das? Berechne zunächst die einzelnen Wahrscheinlichkeiten. Gibt die Lösung wieder in Prozent an.

Zeichne ein Baumdiagramm. Wie viele Ausgänge gibt es?

Stimmt die Aussage auf dem Plakat?

ja
nein


Auch hier kann das Baumdiagramm auf 2 Arten gezeichnet werden:

Man kann eines mit 4 Ereignissen zeichnen:

1. Die Kugel ist grün.

2. Die Kugel ist gelb.

3. Die Kugel ist rot.

4. Die Kugel ist blau.

Die Wahrscheinlichkeit errechnet sich dann aus der absoluten Häufigkeit der Kugeln. Das Baumdiagramm sieht dann so aus:

Baumdiagramm A2 a.jpg

Optional kann eines mit 2 Ereignissen gezeichnet werden:

Die Wahrscheinlichkeit für das Gewinnen ergibt sich aus der Komplementärregel. Die absolute Häufigkeit der blauen Kugeln, mit denen man verliert, liegt bei . Die Komplementärregel ergibt dann für das Gewinnen: .

Das Baumdiagramm sieht dann so aus:

Baumdiagramm A2 b alternativ.jpg

Nun rechnet man die Brüche in Prozent um:

Wahrscheinlichkeit zu verlieren: Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \tfrac{5}{11} \approx 0,4545 = 45,45 %} .

Wahrscheinlichkeit zu gewinnen: Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 100%-45,45%=54,55%} .

Die Wahrscheinlichkeit, zu gewinnen liegt bei 54,55 %, die zu verlieren bei 45,45%. Die Aussage stimmt also.


Arbeitsmethode


Laplace-Experimente