Digitale Werkzeuge in der Schule/Fit für VERA-8/Lineare Funktionen

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel hast du die Möglichkeit, dein Wissen über lineare Funktionen zu gebrauchen, zu erweitern und dein Verständnis zu vertiefen. Das Kapitel gibt dir eine Übersicht über die Zusammenhänge zwischen linearen Funktionen, die darauf liegenden Punkte und über die Gleichungen und Graphen linearer Funktionen.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.


Viel Spaß und Erfolg!


Wiederholung: Was ist eine Funktion?

Aufgabe 1: Lückentext

Zur Einführung in das Thema der linearen Funktionen wiederholen wir zunächst, was eine Funktion überhaupt ist. Versuche dazu, den folgenden Lückentext auszufüllen, indem du die Wörter unter dem Text mit der Maus an die passende Stelle im Text ziehst. Anschließend kannst du deine Antworten überprüfen.

Eine heißt Funktion, wenn -Wert -Wert zugeordnet wird.
Funktionen werden häufig mit bezeichnet.
Durch eine Funktion wird einer ein zugeordnet.
Wenn es einen Term zur Berechnung der Funktionswerte gibt, dann nennt man ihn den
und die zugehörige Gleichung heißt .
Stellt man die als Punkte in einem Koordinatensystem dar, so erhält man den .

ZahlenpaareFunktionsgleichungFunktionstermVariablenjedemGraphen der FunktionZuordnunggenau einFunktionswert


Übung: Überprüfe nun, ob die folgenden Zuordnungen eine Funktion beschreiben.

<b><span style="color: orange">1.)</span> Haus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mapsto}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↦<!-- ↦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mapsto}</annotation> </semantics> </math></span><img src="/index.php?title=Spezial:MathShowImage&amp;hash=64694d71640004d29f8cb99a483a288a&amp;mode=mathml" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.338ex; height: 1.843ex; width: 2.324ex;" alt="{\displaystyle \mapsto}"></span> Adresse</b>

<b><span style="color: orange">2.)</span> Mutter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mapsto}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↦<!-- ↦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mapsto}</annotation> </semantics> </math></span><img src="/index.php?title=Spezial:MathShowImage&amp;hash=64694d71640004d29f8cb99a483a288a&amp;mode=mathml" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.338ex; height: 1.843ex; width: 2.324ex;" alt="{\displaystyle \mapsto}"></span> Kind</b>

<b><span style="color: blue">3.)</span> Zahl <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mapsto}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↦<!-- ↦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mapsto}</annotation> </semantics> </math></span><img src="/index.php?title=Spezial:MathShowImage&amp;hash=64694d71640004d29f8cb99a483a288a&amp;mode=mathml" class="mwe-math-fallback-image-inline" aria-hidden="true" style="vertical-align: -0.338ex; height: 1.843ex; width: 2.324ex;" alt="{\displaystyle \mapsto}"></span> Quersumme der Zahl</b>

Lineare Funktionen erkennen

Merke: Lineare Funktionen

Lineare Funktionen sind dir vielleicht auch unter der Bezeichnung Geradengleichung bekannt. Wie dieser Name schon sagt, handelt es sich bei dem Graphen einer linearen Funktion um eine Gerade. Der Graph kann daher keine Kurven haben.

Im Allgemeinen haben lineare Funktionen die Funktionsgleichung .

  • Dabei ist die Steigung der Geraden und der -Achsenabschnitt, also der Schnittpunkt mit der -Achse.
  • Das Vorzeichen der Steigung gibt an, ob die Gerade fällt (negatives Vorzeichen) oder steigt (positives Vorzeichen).
  • Den Schnittpunkt mit der -Achse, die sogenannte Nullstelle der Funktion, berechnest du, indem du setzt. Denn an dem Punkt, wo der Graph die -Achse schneidet, ist der -Wert gleich .


Im Folgenden kannst du über die beiden Schieberegler die Steigung und den -Achsenabschnitt verstellen und dir anschauen, wie sich der Graph der linearen Funktion verändert. Mit deiner Maus kannst du die Grafik verschieben oder rein- und herauszoomen.


Aufgabe 2: Erkennst du sie?

Entscheide, ob die folgenden Funktionsgleichungen und Graphen lineare Funktionen sind, und ordne sie dem passenden Feld zu.
Wenn du alle Funktionsgleichungen und Graphen zugeordnet hast, kannst du dein Ergebnis mit einem Klick auf den blauen Haken unten rechts überprüfen.

Graph einer linearen Funktion

Aufgabe 3: Zeichnen von Graphen
Zeichne die folgenden Graphen in dein Heft:
Pencil.svg

a)

b)

c)


Aufgabe 4: Funktionsgleichungen und Graphen verbinden

Verbinde den Graphen mit der passenden Funktionsgleichung.

Bestimmung von Funktionsgleichungen

Merke: Das Steigungsdreieck

Die Steigung einer linearen Funktion erhält man mithilfe des Steigungsdreiecks, von welchem zwei Punkte auf dem Graphen liegen. Das Steigungsdreieck kennzeichnet, dass die Steigung dem Verhältnis des Höhen- und Längenunterschiedes beider Punkte entspricht.
Die Steigung berechnest du folgendermaßen:

  1. Du suchst zwei beliebige Punkte und , die auf dem Graphen der Funktion liegen.
  2. Um den Höhenunterschied der Punkte zu bestimmen, benötigt man die y- bzw. f(x)-Koordinaten der Punkte P und Q: Höhenunterschied:
  3. Um den Längenunterschied der Punkte zu bestimmen, benötigt man die x-Koordinaten der Punkte P und Q: Längenunterschied:
  4. Für die Steigung der Geraden gilt dann:
In dieser Grafik kannst du die Steigung m und den y-Achsenabschnitt b verändern. Um Details besser zu sehen, kannst du die Darstellung nach links oder rechts verschieben oder rein- oder herauszoomen.



Aufgabe 5: Funktionsgleichung mit Hilfe von zwei Punkten bestimmen

Nutze die in den folgenden Teilaufgaben genannten Punkte, durch welche eine Gerade verläuft. Bestimme in deinem Heft die jeweilige Gleichung der Geraden in der Form .

a) Gegeben sind die Punkte und .


b) Gegeben sind die Punkte und .


c) Gegeben sind die Punkte und .


d) Gegeben ist dir die unten stehende Wertetabelle.
Wertetabelle von linearer Funktion.png


Aufgabe 6: Funktionsgleichung mit Hilfe von einem Punkt und der Steigung bestimmen

In den folgenden Teilaufgaben ist dir jeweils die Steigung der Geraden und ein Punkt, der auf der Geraden liegt, gegeben. Bestimme die jeweilige Gleichung der Geraden in der Form in deinem Heft.

a) Die Steigung ist und der Punkt .

b) Die Steigung ist und der Punkt .

c) Die Steigung ist und der Punkt

Graphen und ihre Punkte

Aufgabe 7: Liegen die Punkte auf dem Graphen?

Prüfe, ob die Punkte auf dem jeweiligen Graphen liegen.

In der Aufgabe siehst du in der obersten Zeile vier verschiedene Funktionsgleichungen. Zu Beginn ist die erste Funktionsgleichung blau hinterlegt. Hiermit kannst du starten. Wähle die zu dieser Gleichung gehörigen Punkte aus. Hast du alle passenden Punkte ausgewählt, klicke oben die nächste Funktionsgleichung an und wiederhole dein Vorgehen.
Viel Spaß!

Schnittpunkte von linearen Funktionen

Linearen Funktionen haben immer einen Schnittpunkt mit der -Achse, den -Achsenabschnitt. Zusätzlich schneiden alle Funktionen, die nicht konstant sind, die -Achse. Diesen Punkt nennt man auch die Nullstelle der Funktion, da der zugehörige -Wert an dieser Stelle immer gleich ist. Aber es können sich auch zwei lineare Funktionen in einem Punkt schneiden.

Du kannst den Schnittpunkt von linearen Funktionen auf zwei Arten bestimmen.

  1. Rechnerisch
  2. Graphisch

Das graphische Bestimmen des Schnittpunktes kann ungenau sein, da du den Schnittpunkt manchmal nicht exakt ablesen kannst. Durch eine Rechnung erhälst du immer den genauen Schnittpunkt.

Schnittpunkt mit der x-Achse (Nullstelle)

Die Nullstelle einer linearen Funktion ist der Schnittpunkt der Funktion mit der -Achse. Die Berechnung ist daher oftmals leichter als die Berechnung des Schnittpunktes zweier linearer Funktionen, da der -Wert bereits bekannt ist, dieser ist immer .
Wenn du dir nicht mehr sicher bist, wie du die Nullstelle einer linearen Funktion bestimmst, dann schau dir die Tipps an. Ansonsten kannst du direkt mit der Aufgabe starten.

Aufgabe 8: Nullstellen bestimmen
Bestimme graphisch und rechnerisch im Heft die Nullstellen der folgenden Funktionen.

Schnittpunkt von zwei linearen Funktionen

Merke
Zwei lineare Funktionen schneiden sich maximal in einem Punkt, d.h. sie können sich auch in keinem Punkt schneiden. Voraussetzung für das Vorhandensein eines Schnittpunktes ist, dass die beiden Funktionsgleichungen eine unterschiedliche Steigung besitzen


Aufgabe 9: Schnittpunkte von zwei linearen Funktionen


Anwendungsaufgaben / Modellierungsaufgaben

Löse die folgenden Aufgaben in deinem Heft.


Aufgabe 10: Abbrennen einer Kerze
Kerze abbrennen.png
Eine Kerze ist 1,5 Stunden nach dem Anzünden 12 cm und 3,5 Stunden nach dem Anzünden noch 6 cm hoch.

a) Zeichne den Graphen der Zuordnung Zeit Länge der Kerze.
b) Lies an deiner Zeichnung folgende Werte ab:

  • Wie lang war die Kerze zu Beginn?
  • Nach welcher Brennzeit ist sie nur noch 1,5 cm hoch?
  • Wann ist sie abgebrannt?

c) Bestimme die Änderungsrate und gib die Funktionsgleichung in der Form an.
Ermittle nun die gesuchten Werte aus b) mithilfe der Gleichung.




Aufgabe 11: Weg zum Training

Johannes geht zu Fuß von zu Hause aus zur 6km entfernten Sporthalle zum Fußballtraining. Er geht relativ konstant mit 4 km/h. Pauk steht schon vor der Sporthalle. Er startet zur gleichen Zeit wie Johannes mit seinem Fahrrad und fährt ihm entgegen. Paul fährt mit einer konstanten Geschwindigkeit von 16 km/h. Beide nehmen den selben Weg. Wann und wo treffen sie sich?




Aufgabe 12: Handytarife

Maria möchte im Internet surfen und begutachtet die Tarife A, B und C.

Tarif A: Grundgebühr 5 € / Monat die ersten 5 Stunden frei, dann 1 Ct./min.
Tarif B: Grundgebühr 10 € / Monat die ersten 10 Stunden frei, dann 0,8 Ct./min.
Tarif C: Flat–Rate 40 € / Monat.

Maria surft im Durchschnitt zwei Stunden am Tag (30 Tage / Monat).

Iphone 4 blurred.jpg

a) Stelle für jeden Tarif die Funktionsgleichung auf.

b) Zeichne die Funktionsgraphen in ein geeignetes Koordinatensystem.

c) Erkläre, was du am Graphen ablesen kannst.

d) Berechne den günstigsten Tarif für Maria.

e) In welchem Punkt herrscht Kostengleichheit für Tarif A und B?

f) Ab welcher Surfzeit ist Tarif C der günstigste?