Digitale Werkzeuge in der Schule/Fit für VERA-8/Lineare Funktionen
In diesem Lernpfadkapitel hast du die Möglichkeit, dein Wissen über lineare Funktionen zu gebrauchen, zu erweitern und dein Verständnis zu vertiefen. Das Kapitel gibt dir eine Übersicht über die Zusammenhänge zwischen linearen Funktionen, die darauf liegenden Punkte und über die Gleichungen und Graphen linearer Funktionen.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Inhaltsverzeichnis
Wiederholung: Was ist eine Funktion?
Zur Einführung in das Thema der linearen Funktionen wiederholen wir zunächst, was eine Funktion überhaupt ist. Versuche dazu, den folgenden Lückentext auszufüllen, indem du die Wörter unter dem Text mit der Maus an die passende Stelle im Text ziehst. Anschließend kannst du deine Antworten überprüfen.
Eine Zuordnung heißt Funktion, wenn jedem -Wert genau ein -Wert zugeordnet wird.
Funktionen werden häufig mit bezeichnet.
Durch eine Funktion wird einer Variablen ein Funktionswert zugeordnet.
Wenn es einen Term zur Berechnung der Funktionswerte gibt, dann nennt man ihn den Funktionsterm
und die zugehörige Gleichung heißt Funktionsgleichung.
Stellt man die Zahlenpaare als Punkte in einem Koordinatensystem dar, so erhält man den Graphen der Funktion.
1.) Haus Adresse (Ja, die Zuordnung beschreibt eine Funktion.) (!Nein, die Zuordnung beschreibt keine Funktion.)
2.) Mutter Kind (!Ja, die Zuordnung beschreibt eine Funktion.) (Nein, die Zuordnung beschreibt keine Funktion.)
3.) Zahl Quersumme der Zahl (Ja, die Zuordnung beschreibt eine Funktion.) (!Nein, die Zuordnung beschreibt keine Funktion.)
Lineare Funktionen erkennen
Erklärungstext
Wichtigste Infos zu linearen Funktionen. (Merkkästchen)
Graph einer linearen Funktion
Zeichne die folgenden Graphen in dein Heft:
a.)
b.)
c.)
Es gibt zwei mögliche Wege einen Graphen zu zeichnen.
Entweder du betrachtest und von der Funktionsgleichung genauer. Dieses Verfahren wird dir bei der Möglichkeit 1 genauer erläutert.
Oder du setzt Punkte in die Funktionsgleichung ein. Die Möglichkeit 2 zeigt dir hierzu ein Beispiel.
Betrachten wir als Beispiel die Funktionsgleichung .
Dabei gibt den Schnittpunkt mit der y- Achse im Koordinatensystem an. Wir wissen also, dass der Graph der Funktion durch den Punkt verläuft.
Nun betrachten wir die Steigung welche durch gegeben ist. Du kannst dann vom Punkt eine Einheit nach rechts und 1,5 nach unten gehen, weil die Steigung negativ ist.
Betrachten wir erneut die Funktionsgleichung
Bei diesem Verfahren setzt du zwei verschiedene x-Werte in die Gleichung ein. Versuche einfache Werte zu wählen.
Du könntest zum Beispiel wählen. Dann wäre Dies wäre der Punkt .
Als nächstes wählst du eine andere Zahl, z.B. . Dann wäre . Dies wäre der Punkt .
Möglichkeit 1=
Die Funktionsgleichung schneidet die y- Achse im Punkt ,da den Schnittpunkt mit der y-Achse angibt. Diesen Wert kannst du also direkt ablesen.
Nun betrachten wir die Steigung . Wir können vom Punkt nun eine Einheit nach rechts und 2 nach oben gehen, da die Steigung positiv ist.
Verbindet man nun diese Punkte, so erhält man den Graph der Funktion.
Möglichkeit 2 =
Bei dieser Lösungsmöglichkeit wählen wir zwei verschiedene x- Werte.
Zunächst könnte man in die Funktionsgleichung einsetzten und man erhält , also den Punkt .
Als nächstes könnte man z.B. wählen. Dann erhält man durch einsetzten in die Funktionsgleichung . Dies wäre dann der Punkt .
Möglichkeit 1=
Die Funktionsgleichung schneidet die y- Achse im Punkt ,da den Schnittpunkt mit der y-Achse angibt. Diesen Wert kannst du also direkt ablesen.
Nun betrachten wir die Steigung . Wir können vom Punkt nun eine Einheit nach rechts und 3 nach unten gehen, da die Steigung negativ ist.
Verbindet man nun diese Punkte, so erhält man den Graph der Funktion.
Möglichkeit 2 =
Bei dieser Lösungsmöglichkeit wählen wir zwei verschiedene x- Werte.
Zunächst könnte man in die Funktionsgleichung einsetzten und man erhält , also den Punkt .
Als nächstes könnte man z.B. wählen. Dann erhält man durch einsetzten in die Funktionsgleichung . Dies wäre dann der Punkt .
Möglichkeit 1=
Die Funktionsgleichung schneidet die y- Achse im Punkt ,da den Schnittpunkt mit der y-Achse angibt. Diesen Wert kannst du also direkt ablesen.
Nun betrachten wir die Steigung . Wir könnten vom Punkt nun eine Einheit nach rechts und nach unten gehen, da die Steigung negativ ist.
Da dies allerdings schwierig und ungenau abzulesen ist, bietet es sich hier an stattdessen ein Vielfaches der Steigung zu gehen. Multiplizieren wir die Steigung z.B. mit 3 erhalten wir . Dieser Wert ist deutlich einfacher einzuzeichnen in ein Koordinatensystem. Wir gehen nun also von dem Punkt 3 Einheiten nach rechts, weil wir die Steigung ja mit 3 multipliziert haben. Dann gehen wir 2,5 Einheiten nach unten, da die Steigung negativ ist. Nun sind wir bei dem Punkt ausgekommen, welchen man gut in ein Koordinatensystem einzeichnen kann.
Verbindet man nun diese Punkte, so erhält man den Graph der Funktion.
Möglichkeit 2 =
Bei dieser Lösungsmöglichkeit wählen wir zwei verschiedene x- Werte.
Zunächst könnte man in die Funktionsgleichung einsetzten und man erhält , also den Punkt .
Als nächstes könnte man z.B. wählen. Dann erhält man durch einsetzten in die Funktionsgleichung . Dies wäre dann der Punkt .
Graphen mit Funktionsgleichungen verbinden
Bestimmung von Funktionsgleichungen
Die Steigung einer linearen Funktion erhält man mithilfe des Steigungsdreiecks, von welchem zwei Punkte auf dem Graphen liegen. Das Steigungsdreieck kennzeichnet, dass die Steigung dem Verhältnis des Höhen- und Längenunterschiedes beider Punkte entspricht.
Die Steigung berechnest du folgendermaßen:
1. Du suchst zwei beliebige Punkte und , die auf dem Graphen der Funktion liegen.
2. Um den Höhenunterschied der Punkte zu bestimmen, benötigt man die y-Koordinaten der Punkte P unc Q:
Höhenunterschied:
3. Um den Längenunterschied der Punkte zu bestimmen, benötigt man die x-Koordinaten der Punkte P und Q:
Längenunterschied:
4. Für die Steigung der Geraden gilt dann:
Nutze die je in den folgenden Teilaufgaben genannten Punkte, durch welche eine Gerade verläuft. Bestimme in deinem Heft die jeweilige Gleichung der Geraden in der Form .
a)
b)
c)
d) Wertetabelle
Überlegt euch, welche Infos ihr habt. (Platzhalter)
In den folgenden Teilaufgaben ist dir jeweils die Steigung der Geraden und einen Punkt, der auf der Geraden liegt, gegeben. Bestimme die jeweilige Gleichung der Geraden in der Form in deinem Heft.
a) Die Steigung ist und der Punkt .
- Setze als erstes für die Steigung ein, sodass die Gleichung entsteht.
- Nutze die Angabe des Punktes . Dann erhälst du mit und die Gleichung erhältst.
- Bestimme mit Auflösung nach den Wert . Schließlich erhälst du, wenn du die Werte für m und b einsetzt, die Geradengleichung ergibt.
b) Die Steigung ist und der Punkt .
- Setze als erstes für die Steigung ein, sodass die Gleichung entsteht.
- Nutze die Angabe des Punktes . Dann erhälst du mit und die Gleichung erhältst.
- Bestimme mit Auflösung nach den Wert . Schließlich erhälst du, wenn du die Werte für m und b einsetzt, die Geradengleichung ergibt.
c) Die Steigung ist und der Punkt
- Setze als erstes für die Steigung ein, sodass die Gleichung entsteht.
- Nutze die Angabe des Punktes . Dann erhälst du mit und die Gleichung erhältst.
- Bestimme mit Auflösung nach den Wert . Schließlich erhälst du, wenn du die Werte für m und b einsetzt, die Geradengleichung ergibt.
Liegen die Punkte auf dem Graphen?
Prüfe rechnerisch oder durch zeichnen der Graphen der Funktionsgleichungen, ob die Punkte auf den Graphen der Funktionsgleichungen liegen.
Schnittpunkte von linearen Funktionen
Schnittpunkt mit der x-Achse (Nullstelle)
Schnittpunkt von zwei linearen Funktionen
Anwendungsaufgaben/ Modellierungsaufgaben
Löse die folgenden Aufgaben in deinem Heft.
Eine Kerze ist 1,5 Stunden nach dem Anzünden 12 cm und 3,5 Stunden nach dem Anzünden noch 6 cm hoch.
a) Warum handelt es sich hierbei um eine lineare Funktion?
b) Zeichne den Graphen der Zuordnung Zeit Länge der Kerze.
c) Lies ab: Wie lang war die Kerze zu Beginn? Nach welcher Brennzeit ist sie nur noch 1,5 cm hoch? Wann ist sie abgebrannt?
d) Bestimme die Änderungsrate und gib die Funktionsgleichung in der Form an. Ermittle nun die gesuchten Werte aus c) mithilfe der Gleichung. Vergleiche.
Überlegt euch, welche Infos ihr habt. (Platzhalter)
b) ohne "Lies ab" sondern Lösungsweg frei wählbar, dann müsste c) aber anders formuliert werden.
Johannes geht zu Fuß von zu Hause aus zur 6km entfernten Sporthalle zum Fußballtraining. Er geht relativ konstant mit 4 km/h. Pauk steht schon vor der Sporthalle. Er startet zur gleichen Zeit wie Johannes mit seinem Fahrrad und fährt ihm entgegen. Paul fährt mit einer konstanten Geschwindigkeit von 16 km/h. Beide nehmen den selben Weg. Wann und wo treffen sie sich?
Überlege, welche Werte oben die Steigung und welche den y-Achsenabschnitt der verschiedenen Funktionen darsteellt. Male es dir graphisch auf.
Durch die oben genannten Daten stellst du die Funktionsgleichungen auf. Johannes' Geschwindigkeit 4km/h stellt die Steigung m der Gleichung da. Johannes ist auf dem Weg zur Trainigshalle, also ist sein Staatspunkt bei 0km. Somit erhält man für Johannes die Gleichung . Paul fährt ihm mit 16 km/h entgegen. Da er in entgegengesetzter Richtung zu Johannes fährt, ist die steiggung der Gleichung negativ. Du bekommst die Gleichung . Da Paul an der Sporthalle startet, ist der Wert b=6 für den y-Achsenabschnitt. Somit erhält man die Gleiichung .
Jetzt hast du zwei Möglichkeiten:
1.
2. Du zeichnest beide Graphen und liest den Schnittpunkt der Geraden ab.
Mit beiden Lösungwegen erhälst du die Werte x=0,3 und y=1,2.
Maria möchte im Internet surfen und begutachtet die Tarife A, B und C.
Tarif A: Grundgebühr 5 € / Monat die ersten 5 Stunden frei, dann 1 Ct./min.
Tarif B: Grundgebühr 10 € / Monat die ersten 10 Stunden frei, dann 0,8 Ct./min.
Tarif C: Flat–Rate 40 € / Monat.
Maria surft im Durchschnitt zwei Stunden am Tag. (30 Tage /Monat).
a) Stellen Sie für jeden Tarif die Funktionsgleichung auf.
b) Zeichnen Sie die Funktionsgraphen in ein geeignetes Koordinatensystem.
c) Erklären Sie, was alles aus den Graphen ablesbar ist (Interpretation).
d) Berechnen Sie den günstigsten Tarif für Maria.
e) In welchem Punkt herrscht Kostengleichheit für Tarif A und B?
f) Ab welcher Surfzeit ist Tarif C der günstigste?