Digitale Werkzeuge in der Schule/Fit für VERA-8/Lineare Funktionen

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel hast du die Möglichkeit, dein Wissen über lineare Funktionen zu gebrauchen, zu erweitern und dein Verständnis zu vertiefen. Das Kapitel bietet dir eine Übersicht über die Zusammenhänge zwischen linearen Funktionen, die darauf liegenden Punkte und über die Gleichungen und Graphen linearer Funktionen.

Gelbe Aufgaben dienen der Wiederholung und Vertiefung.

Blaue Aufgaben sind Aufgaben mittlerer Schwierigkeit.

Grüne Aufgaben sind Knobelaufgaben.

Wiederholung: Was ist eine Funktion?

Zur Einführung in das Thema der linearen Funktion wiederholen wir zunächst, was eine Funktion überhaupt ist. Versuche dazu, den folgenden Lückentext auszufüllen, indem du die Wörter unter dem Text mit der Maus an die passende Stelle im Text ziehst. Anschließend kannst du deine Antworten überprüfen.

Eine Zuordnung heißt Funktion, wenn jedem -Wert genau ein -Wert zugeordnet wird. Funktionen werden häufig mit bezeichnet. Durch eine Funktion wird einer Variablen ein Funktionswert zugeordnet.

Lineare Funktionen erkennen

Erklärungstext

Merke
Wichtigste Infos zu linearen Funktionen. (Merkkästchen)
Aufgabe 1
Graphen zuordnen, ob lineare Funktion, keine Funktion (oder andere Funktion)

Graph einer linearen Funktion

Aufgabe 2
Selber Graphen zeichnen anhand einer Funktionsgleichung


Aufgabe 3
Graphen mit Funktionsgleichungen verbinden

Bestimmung von Funktionsgleichungen

Merke
Merksatz zum Steigungsdreieck, GeoGebra plus Schieberegler
Aufgabe 4
Funktionsgleichungen bestimmen

und/oder mithilfe eines Punktes und der Steigung oder mithilfe von zwei Punkten oder mit Wertetabelle

Liegen die Punkte auf dem Graphen?

Aufgabe 5
Puzzle oder Verbinden (o.Ä.) mit verschiedenen Funktionsgleichungen und verschiedenen Punkten

Schnittpunkte von linearen Funktionen

Schnittpunkt mit der x-Achse (Nullstelle)

Schnittpunkt von zwei linearen Funktionen

Anwendungsaufgaben/ Modellierungsaufgaben

Aufgabe: Abbrennen einer Kerze

Eine Kerze ist 1,5 Stunden nach dem Anzünden 12 cm und 3,5 Stunden nach dem Anzünden noch 6 cm hoch.

Kerze abbrennen.png

a) Warum handelt es sich hierbei um eine lineare Funktion?
b) Zeichne den Graphen der Zuordnung Zeit Länge der Kerze.
c) Lies ab: Wie lang war die Kerze zu Beginn? Nach welcher Brennzeit ist sie nur noch 1,5 cm hoch? Wann ist sie abgebrannt?
d) Bestimme die Änderungsrate und gib die Funktionsgleichung in der Form an. Ermittle nun die gesuchten Werte aus c) mithilfe der Gleichung. Vergleiche.


Überlegt euch, welche Infos ihr habt. (Platzhalter)

Text zum Verstecken
Text zum Verstecken
Text zum Verstecken
Text zum Verstecken
Text zum Verstecken
Text zum Verstecken


b) ohne "Lies ab" sondern Lösungsweg frei wählbar, dann müsste c) aber anders formuliert werden.


Aufgabe: Weg zum Training

Johannes geht zu Fuß von zu Hause aus zur 6km entfernten Sporthalle zum Fußballtraining. Er geht relativ konstant mit 4 km/h. Pauk steht schon vor der Sporthalle. Er startet zur gleichen Zeit wie Johannes mit seinem Fahrrad und fährt ihm entgegen. Paul fährt mit einer konstanten Geschwindigkeit von 16 km/h. Beide nehmen den selben Weg. Wann und wo treffen sie sich?

Text zum Verstecken
Text zum Verstecken


Aufgabe: Handytarife

Maria möchte im Internet surfen und begutachtet die Tarife A, B und C.

Tarif A: Grundgebühr 5 € / Monat die ersten 5 Stunden frei, dann 1 Ct./min.
Tarif B: Grundgebühr 10 € / Monat die ersten 10 Stunden frei, dann 0,8 Ct./min.
Tarif C: Flat–Rate 40 € / Monat.

Maria surft im Durchschnitt zwei Stunden am Tag. (30 Tage /Monat).

Iphone 4 blurred.jpg

a) Stellen Sie für jeden Tarif die Funktionsgleichung auf.
b) Zeichnen Sie die Funktionsgraphen in ein geeignetes Koordinatensystem.
c) Erklären Sie, was alles aus den Graphen ablesbar ist (Interpretation).
d) Berechnen Sie den günstigsten Tarif für Maria.
e) In welchem Punkt herrscht Kostengleichheit für Tarif A und B?
f) Ab welcher Surfzeit ist Tarif C der günstigste?

Text zum Verstecken
Text zum Verstecken