Digitale Werkzeuge in der Schule/Ableitungen üben und vertiefen/Die Steigung in einem Punkt - die Ableitung als Tangentensteigung

Aus ZUM Projektwiki

Inhaltsübersicht

a) Unterscheidung Tangente, Sekante und Normale - Aufgabe 1
b) Zuordnungsaufgaben bezüglich der Tangentensteigung - Aufgabe 2, 3, 4 und 5
c) Untersuchung einer Funktion - Aufgabe 6, 7, 8 und 9




Aufgabe 1: Kannst du die Begriffe unterscheiden?

a) Unterscheidung Tangente, Sekante und Normale





b) Zuordnungsaufgaben bezüglich der Tangentensteigung

Aufgabe 2: Ordne die jeweilige Steigung den entsprechenden Punkten zu





Aufgabe 3: Die Steigung der Tangente in einem x-Wert




Aufgabe 4: Wahr oder Falsch?



Aufgabe 5: Memory. Wie fit bist du beim Behalten von Graphen und einer Steigung in einem Punkt?




c) Untersuchung einer Funktion

Aufgabe 6: Steigung und Koordinaten ablesen



Aufgabe 7: Raupenfahrt

<popup name="Lösung"> Die Steigfähigkeit der Raupe liegt mit 76% über der Steigung von 75%. </popup>




Aufgabe 9: Kann es in einem Punkt einer Funktion zwei oder mehr Tangenten geben?!



Error: www.geogebra.org is not an authorized iframe site.


Verbinde mit Hilfe einer Strecke die Punkte (0|0), (6|6); (6|6), (16|6).

a) Welche Tangente(n) würdest du im Punkt P(6|6) einzeichnen?

b) Zeichne zu den jeweiligen Intervallen ([0;6] und [6;16]) die Steigung ein. Wie verläuft die Steigung und was passiert im Punkt P(6|6)?




<popup name="Lösung a)">

Im Punkt P(6|6) gibt es keine eindeutige Tangente. Je nachdem ob man die Steigung von links oder von rechts betrachte, erhält man eine andere, wie im Graph zu sehen ist.

Fläche 1
</popup>


<popup name="Lösung b)"> Die Steigung verläuft im Intervall [0;6] und [6;16] linear. Jedoch gibt es im Punkt P(6|6) einen Sprung. Hier ist die neue Funktion also nicht zusammenhängend (Sprungstelle) und daher auch nicht differenzierbar.

Fläche 1
</popup>