Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema

Aus ZUM Projektwiki


Wissen: Extremstellenbestimmung von Funktionen

Eine Funktion , die in einem Intervall streng monoton wächst und im darauf folgenden Intervall streng monoton fällt, besitzt einen Punkt, an dem die Funktion weder steigt noch fällt. Dieser Punkt wird als Maximum beziehungsweise Minimum bezeichnet, allgemein als Extremum.

Extrema werden bei einer Funktionsuntersuchung weitergehend darin unterschieden, ob es sich dabei um ein globales oder lokales Extremum handelt. Wichtig ist es dabei, dass du dein Intervall berücksichtigst.

  • Es liegt ein lokales Extremum vor, wenn kein größerer oder kleinerer Funktionswert in einem betrachteten Intervall vorhanden ist.
  • Ein globales Extremum liegt vor, wenn kein größerer oder kleinerer Funktionswert des gesamten Graphen existiert.

Merke: Bei der Bestimmung der globalen Extremstellen ist besonders wichtig für dich, die Randwerte zu überprüfen. Die nachfolgende Übung soll Dir dabei den Unterschied verdeutlichen!


Aufgabe 1: Globale und lokale Extrema zuordnen

Ordne die Fachbegriffe den passenden Punkten der Funktion zu. Klick auf die Stecknadel und wähle die richtige Antwort aus!



Berechnung einer Extremstelle

Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion gilt:

Notwendiges Kriterium: Bei einem möglichem Extremum beträgt die Steigung 0, da sich in diesem Punkt das Steigungsverhalten der Funktion ändert. Vor einem Hochpunkt beispielsweise steigt die Funktion und direkt nach dem Hochpunkt fällt sie. Im Folgenden wird dieser Punkt als bezeichnet. Daher gilt: .
Hinreichendes Kriterium: Die potentiellen Extremstellen werden in eingesetzt. Achte darauf, dass dabei zwei Möglichkeiten entstehen. Für kann folgen:
  • Es liegt ein Hochpunkt vor.
  • Es liegt ein Tiefpunkt vor.
Hinweis: Alternativ kannst du das hinreichende Kriterium überprüfen, indem du überprüfst, ob ein Vorzeichenwechsel vor und hinter einem Extrema vorliegt.
Ordinate bestimmen: Zu jeder Stelle existiert eine passende Ordinate. Dazu setzt du in ein. Zusammenfassend erhälst du alle Extremstellen der Form .

Achtung: Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: . Dabei kann es sich um eine sogenannte Sattelstelle handeln. Diese Sattelstelle stellt einen besonderen Fall eines Wendepunkts dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen.
Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen Extremstellen besser merken zu können:

ÜbersichtExtrema.png


Beispiel: Bestimmung von Extremstellen


Wir untersuchen die folgende Funktion auf Extremstellen.

  1. Zunächst bilden wir die erste Ableitung und setzen diese gleich null: . Umformungen dieser Gleichung liefern die möglichen Extremstellen und .
  2. Das Bilden der zweiten Ableitung ergibt:
    • Hochpunkt an der Stelle .
    • Tiefpunkt an der Stelle .
  3. Es fehlen nun die Ordinaten, die wir durch das Einsetzen in bestimmen.
Wir erhalten: HP und TP .



Aufgabe 2: Extrema ganzrationaler Polynome bestimmen

Berechne die Extremstellen der folgenden Aufgabe. Jede Funktion besitzt einen unterschiedlich hohen Schwierigkeitsgrad. Wenn du dir noch nicht so sicher bist bei der Bestimmung von Extremstellen, so solltest du die erste Aufgabe erarbeiten. Fühlst du dich jedoch gut vorbereitet und bist der Meinung du kannst auch komplexere Funktionen auf Extremstellen untersuchen. Dann versuche dein Können an der dritten Aufgabe.

a)
Schaue dir das obige Beispiel nochmal genau an!
Versuche, die ersten beiden Ableitungen von der Funktion zu berechnen und schaue dir dann die Kriterien für Extrema an!

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
, mit .
Durch Umformungen erhalten wir die möglichen Extremstellen:

Hinreichendes Kriterium
oder , mit .
Wir erhalten durch einsetzen: Es handelt sich um einen Tiefpunkt bei
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein: TP
b)
Schaue dir das obige Beispiel nochmal genau an!
Versuche, die ersten beiden Ableitungen von der Funktion zu berechnen und schaue dir dann die Kriterien für Extrema an!
Bei der Bestimmung der Nullstellen in der ersten Ableitung kann dir die P-Q-Formel helfen.

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
, mit .
Durch Umformungen erhalten wir die möglichen Extremstellen:
PQ-Formel anwenden

und
Hinreichendes Kriterium
oder , mit .
Wir erhalten durch einsetzen:
Es handelt sich um einen Hochpunkt bei
Es handelt sich um einen Tiefpunkt bei
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
HP
TP
c) mit . In dem unten abgebildeten Bild kannst du durch den Schieberegler an der Funktion drehen und sehen wie sich für verschiedene verändert.
Schaue dir das obige Beispiel nochmal genau an!
Versuche, die ersten beiden Ableitungen von der Funktion zu berechnen und schaue dir dann die Kriterien für Extrema an!
Betrachte das als eine beliebige Zahl.
GeoGebra

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
, mit .
Durch Umformungen erhalten wir die möglichen Extremstellen:
Ausklammern
Satz vom Nullprodukt
oder

. und

Hinreichendes Kriterium
oder , mit .
Wir erhalten durch einsetzen:
, da Es handelt sich um einen Hochpunkt bei
Es handelt sich um einen möglichen Sattelpunkt bei Dies muss überprüft werden!
, da Es handelt sich um einen Tiefpunkt bei
Achtung: Ob es sich um eine Sattelstelle bei handelt, wird durch die dritte Ableitung überprüft, indem wir zeigen, dass stimmt. Es gilt
Es liegt ein Sattelpunkt vor.
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
HP
SP
TP


Aufgabe 3: Besucher in den Münster-Arkaden
MuensterArkaden72.JPG


Die Anzahl der Kundender Arkaden in Münster wird für mit Hilfe der Funktion modelliert. Die Variable stellt dabei die Uhrzeit in Stunden dar.

a) Bestimme die Uhrzeit, an der die Anzahl der Kunden am größten ist. Wie viele Besucher halten sich zu dieser Zeit in den Arkaden auf?
Antwortsatz
Um 15:06 Uhr besuchen insgesamt 376 Personen die Arkaden.
Ableitungen bestimmen
Notwendiges Kriterium
oder . Hier ist nur der zweite Wert von Relevanz, da der erste außerhalb des Definitionsbereiches liegt.
Hinreichendes Kriterium
Es liegt ein Hochpunkt vor.
Ordinate bestimmen
Dieser Wert wird aufgerundet!
Uhrzeit bestimmen
Stunden entsprechen 15 Stunden und Minuten = Minuten. Das entspicht eine Uhrzeit von 15.06 Uhr.
b) Berechne und beschreibe was dieser Wert im Sachzusammenhang bedeutet.
Überlege Dir in welchem Zusammenhang die Ableitung mit der Anzahl an Personen steht. Schau dir dazu den Merkkasten erneut an.


Die Ableitungsfunktion beschreibt die Anzahl der Kunden, die zu der Uhrzeit die Arkaden betreten oder verlassen. Insgesamt befinden sich um 12 Uhr 67 Kunde mehr in den Arkaden.
c) Um 10 Uhr betritt eine bestimmte Anzahl an Kunden das Arkaden. Berechne den Zeitpunkt an dem genauso viele Kunden das Center verlassen, wie sie es um 10 Uhr betreten haben.
Überlege Dir, wie die Zunahme und Abnahme von Kunden mathematisch betrachtet werden kann. Erinnere dich daran, dass man von einer positiven Zunahme spricht.

Bestimme die Anzahl neuer Kunden um 10 Uhr:

Hier muss ein Vorzeichenwechsel stattfinden, denn die Zunahme von Kunden bedeutet im mathematischen Sinne eine positive Zunahme. Da nach einer Uhrzeit gesucht wird, bei der 95 Kunden mehr die Arkaden verlassen als betreten, wird aus +95 -95.

Bestimme die Uhrzeit zu der 95 Kunden die Arkaden verlassen:

oder

Umrechnung der Uhrzeit: Stunden entsprechen in etwa 10 Minuten, denn Minuten Minuten.

Antwortsatz: Um etwas 18:10 nimmt die Anzahl der Kunden um 95 Personen ab.