Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate
Inhaltsverzeichnis
Allgemeine Hinweise zur Bearbeitung
Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzeichnet sind:
- Aufgaben mit gelbem Titel: Gelerntes wiederholen und anwenden
- Aufgaben mit blauem Titel: mittelschwere Aufgaben zum Üben und Vertiefen
- Aufgaben mit grünem Titel: Knobelaufgaben
Viel Erfolg und viel Spaß!Grundlegende Begriffe und Formeln
Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:
Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion. Die Sekante (der Begriff bedeutet die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet.
Um die lokale Änderungsrate zu bestimmen, verkleinern wir den Abstand zwischen und , wählen also immer näher bei (dafür schreibst Du ). Dabei geht die Sekante in die Tangente über, eine Gerade also, die den Funktionsgraphen in genau einem Punkt berührt. Die Steigung der Tangente ist genau die (lokale) Änderungsrate der Funktion in diesem Punkt.
Die lokale Änderungsrate in einem Punkt nennt man Differenzialquotient und berechnet diese als Grenzwert (Du schreibst dafür ) der Sekantensteigungen:
Setzt man für den Abstand von zu so gilt die Formel:
Die Ableitung (oder Ableitungsfunktion) beschreibt lokal das Verhalten der Funktion an beliebigen Stelle x.
Aufgaben zum Wiederholen und Anwenden
Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.
a) Gegeben ist die Funktion auf dem Intervall [0; 2]
b) Gegeben ist die Funktion auf dem Intervall [1; 2]
c) Gegeben ist die Funktion auf dem Intervall [-2; -1]
d) Gegeben ist die Funktion auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird?
Du benötigst für diese Aufgabe Papier und Stifte, um Notizen zu machen.
In dem Applet ist der Graph der Funktion f(x) = 0,1·x² + 1 dargestellt.
- Verändere mithilfe des Schiebereglers für Δx den Abstand zwischen den Punkten A und B.
- Notiere für Δx = 3,5 ; 3,0 ; 2,5; 2,0; 1,5; 1,2; 1,1 und 0,5 die Steigung k der Sekanten durch die Punkte A und B.
- Welche Steigung k der Tangente im Punkt A lässt sich als Grenzwert der Sekantensteigungen vermuten?
- Führe dieselbe Aufgabe für die Funktion f(x) = 0.1·x² durch. Was stellst Du fest? Ist es überraschend?
Im kalten Winter unter idealen Bedingugnen (keine Reibung, kein hektisches Lenken und kein unnötiges Bremsen) schlitterst Du einen Hang mit 5% Gefälle hinab. Der von deinem Schlitten zurückgelegter Weg wird annährend durch den Term beschrieben. Dabei steht t für die Zeit nach dem Start in Sekunden und w(t) für die seit dem Start zurückgelegte Strecke in Metern. 100m weit von deinem Startpunkt entfernt steht auf der Schräge ein Baum.
a) Wann prallt dein Schlitten auf den Baum?
Aufgaben zum Üben und Vertiefen
a) Ordne die Begriffe und Abbildungen richtig zu, indem Du sie auf das rechte oder linke Feld ziehst.
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Gegeben sind die Funktionen:
- und der Punkt (2; f(2))
- und der Punkt (1; h(1))
a) Zeichne die Graphen der Funktionen f(x) und h(x) sowie nach Augenmaß die Tangenten in den angegebenen Punkten. Bestimme die Steigung der Funktion im gegebenen Punkt durch Ablesen der Tangentensteigung.
b) Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Deine Ergebnisse mit den Ergebnissen aus Teil a).
Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: . Hier entspricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle.
Für die Funktion f(x) rechnest Du also:
, wenn Du h=0 einsetzt.
Für die Funktion h(x) rechnest Du:
Wenn Du sauber gezeichnet und abgelesen hast, sind die Antworten in den Teilen a) und b) gleich.
Du benötigst für die Aufgabe Papier, Stifte und einen Taschenrechner.
Die Verbreitung der Schockwelle einer atomaren Explosion kann man annähernd mit folgender Funktion beschreiben:
Dabei steht die Variable t für die Zeit nach der Explosion, gemessen in Sekunden, und die abhängige Variable R für den Radius der Verbreitung gemessen in Kilometern.
a) Berechne die mittlere Ausbreitungsgeschwindigkeit der atomaren Explosion in folgenden Zeitabschnitten:
- ersten drei Sekunden nach der Explosion
- ersten zehn Sekunden nach der Explosion
- im Zeitintervall zw. der 7. und der 10. Sekunde
Im Teil a) wird nach dem Differenzenquotient gefragt, denn Du mit der Formel : berechnest. Für die ersten 3 Sekunden heißt im Intervall [0; 3],somit: km/s
Die Lösung für die ersten 10 Sekunden lautet : 19,2 km/s. Im Zeitintervall zwischen der 7. und der 10. Sekunde beträgt die mittlere Ausbreitungsgeschwindigkeit : 30,4 km/sb)Berechne die Geschwindigkeit der Ausbreitung im angegebenen Zeitpunkt:
- zweite Sekunde nach der Explosion
- zehnte Sekunde nach der Explosion
Wird nach der Geschwindigkeit zu einem Zeitpunkt gefragt, so handelt es sich um die lokale Änderungsrate, Du musst also den Differentialquotienten berechnen. Die Formel hast Du bereits in der Aufgabe 4 benutzt. Für die Geschwindigkeit in der zweiten Sekunde rechnest Du also:
km/s.Die momentane Ausbreitungsgeschwindigkeit in der Sekunde 10 beträgt bereits : 35,2 km/s
Knobelaufgaben
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Ein Teil der Achterbahn lässt sich durch den Graphen der Funktion: beschreiben.
a) Zeichne den Graphen der Funktion f(x) .Vervollständige folgende Tabelle, in dem Du in den angegebenen Punkten nach Augenmaß Tangenten zeichnest und deren Steigungen m durch Ablesen bestimmst.
b) Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a). Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem.
c) Berechne den Differentialquotient (Ableitung) von in einem beliebigen Punkt. Vergleiche Dein Ergebnis mit dem Ergebnis von Teil b).