Benutzer:Lena WWU-6/Testseite Optimierungsprobleme
Aus ZUM Projektwiki
< Benutzer:Lena WWU-6
Version vom 17. April 2020, 09:59 Uhr von Lena WWU-6 (Diskussion | Beiträge)
Digitale Werkzeuge in der Schule/Basiswissen Analysis
Globales Extremum und Randextremum
Merke
Der größte Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Maximum. Der kleinste Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Minimum.
Ein globales Extremum an einer Randstelle der Definitionsmenge heißt Randextremum.
Aufgabe
Aufgabe
Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein:
- Die Länge soll nicht größer als sein.
- Länge plus Umfang der quadratischen Seitenflächen soll groß sein.
a) Ermittle die Abmessungen des Pakets mit dem größten Volumen.
b) Gebe das maximale Volumen an.
Aufgabe
Aus einem kreisförmigen Stück Papier mit dem Radius soll eine kegelförmige Tüte mit maximalem Volumen geformt werden. Dazu wird der Kreis längs eines Radius eingeschnitten und zu einer Tüte geformt.
Beachte, dass der Radius des Stücks Papier der Mantellinie entspricht.
Das Volumen eines Kegels errechnet man mit der Formel .
Überlege dir, wie du die Länge s ermitteln könntest. Denke dabei an den Satz des Pythagoras