Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate
Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzeichnet sind:
- Schwierigkeitsstufe I mit gelben Titel: leichte Verständnis- und Rechenaufgaben zum Einstieg
- Schwierigkeitsstufe II mit blauen Titel: normale, mittelschwere Aufgaben zum üben und vertiefen.
- Schwierigkeitsstufe III mit grünen Titel: herausfordernde Aufgaben
Viel Erfolg!
Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:
Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion.
Die Sekante (der Begriff bedeutet aus dem Lateinischen übersetzt die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet.
Ein Beispiel:
Das Verkehrszeichen gibt an, dass der durchschnittlicher Höhenunterschied (also die durchschnittliche Änderungsrate) auf dieser Strecke 10 Höhenmeter pro 100m Wegstrecke beträgt. Die echte Strasse selbst verläuft natürlich nicht als exakt gerade Linie mit einer konstanten Steigung.
Um den Unterschied zwischen lokaler und durchschnittlicher Änderungsrate zu verstehen, denke über folgendes Beispiel nach:
Ein Autofahrer fährt durch eine Baustelle mit einer Geschwindikeitsbegrenzung von 60km/h. Er merkt sich den Zeitpunkt und Kilometerstand bei der Einfahrt und beim Verlassen der Baustelle und rechnet nach, dass seine durchschnittliche Geschwindigkeit unter 60km/h war. Trotzdem wird er in der Baustelle zum Zeitpunkt x von der mobilen Geschwindigkeitsüberwachnung der Polizei fotografiert. Diese erfasst nämlich die Geschwindigket (also die Änderung von )an einem bestimmten Punkt, also lokal oder momentan. Diese momentane Geschwindigkeit kann sich, wie in diesem Fall, deutlich von der durchschnittlichen unterscheiden.
Um die lokale Änderungsrate zu bestimmen, verkleinern wir den Abstand zwischen und , wählen also immer näher bei (dafür schreibst Du ). Dabei geht die Sekante in die Tangente über, eine Gerade also, die den Funktionsgraphen in genau einem Punkt berührt. Die Steigung der Tangente ist genau die (lokale) Änderungsrate der Funktion in diesem Punkt.
Die lokale Änderungsrate nennt man Differenzialquotient oder Ableitung und berechnet diese als Grenzwert (Du schreibst dafür ) der Sekantensteigungen:
Setzt man für den Abstand von zu so gilt die Formel:
a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst.
b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe
Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.
a) Gegeben ist die Funktion auf dem Intervall [0; 2]
b) Gegeben ist die Funktion auf dem Intervall [1; 2]
c) Gegeben ist die Funktion auf dem Intervall [-2; -1]
d) Gegeben ist die Funktion auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird?
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Gegeben sind die Funktionen:
- und der Punkt (2; f(2))
- und der Punkt (1; h(1))
a) Zeichne die Graphen der Funktionen f(x) und h(x) sowie nach Augenmaß die Tangenten in den angegebenen Punkten. Bestimme die Steigung der Funktion im gegebenen Punkt durch Ablesen der Tangentensteigung.
b) Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Dein Ergebniss mit den Ergebnissen aus Teil a).
Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: . Hier entpsricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle. Für die Funktion f(x) rechnest Du also:
, wenn Du h=0 einsetzt.