Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren 2.0/Terme und Gleichungen
Dieses Kapitel des Lernpfades soll Dir helfen, dein Wissen über Terme und Gleichungen zu überprüfen und aufzufrischen. Du kannst selbst auswählen, in welcher Reihenfolge du das Kapitel bearbeiten möchtest und welche Aufgaben für dich am geeignetsten sind.
In Aufgaben, die gelb gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.
Aufgaben in blauer Farbe sind Forderaufgaben.
Und Aufgaben mit grüner Hinterlegung sind besonders anspruchsvolle Knobelaufgaben.
Inhaltsverzeichnis
Wiederholung: Terme
Lies dir die Inhalte der folgenden Infokästchen sorgfältig durch und nutze sie, wenn du bei späteren Aufgaben ins Stocken kommst.
Ein Term ist ein mathematischer Ausdruck, der Zahlen, Variablen, Symbole für mathematische Verknüpfungen (Plus, Minus, Mal, Geteilt) und Klammern enthalten kann.
Beispiele:
Terme zu vereinfachen bedeutet, die Terme durch die dir bekannten Methoden wie Addieren, Subtrahieren, Multiplizieren, Ausmultiplizieren und Ausklammern zu verkürzen oder übersichtlicher darzustellen. Hier sind einige Beispiele:
Addieren:
Subtrahieren:
Multiplizieren:
Ausmultiplizieren:
Ausklammern:
Terme zusammenfassen
Fasse die Terme durch Addieren und Subtrahieren zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
e)
f)
a)
b)
c)
d)
e)
Fasse die Terme durch Addieren und Subtrahieren zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
e)
a)
b)
c)
d)
Fasse die Terme durch Addieren und Subtrahieren zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Füge die zugehörigen Terme zusammen. Du kannst hierfür deinen Stift und Papier nutzen.
Fasse die Terme durch Ausmultiplizieren zusammen. Vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Fasse die Terme durch Ausmultiplizieren zusammen. Vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Fasse die Terme durch Ausmultiplizieren zusammen. Vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Fasse die Terme durch Ausklammern zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Fasse die Terme durch Ausklammern zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Fasse die Terme durch Ausklammern zusammen, vereinfache dabei soweit wie möglich.
a)
b)
c)
d)
a)
b)
c)
Füge die zugehörigen Terme zusammen.
Gleichungen
In diesem Abschnitt kannst du trainieren, wie du lineare und quadratische Gleichungen aufstellst und löst. Falls du nicht mehr genau weißt, was eine Gleichung ist, lies dir die kurze Erklärung noch einmal durch:
Eine Gleichung ist eine Aussage über die Gleichheit zweier Terme, die mit Hilfe des Gleichheitszeichens ("=") symbolisiert wird.
Gleichungen sind entweder wahr (5 = 5) oder falsch (5 = 6).
Beispiele:
Aufgabe 6
Löse folgende Gleichungen:
I | II | III |
---|---|---|
a) |
a) |
a) |
b) |
b) |
b) |
c) |
c) |
c) |
d) |
d) |
Aufgabe 7
Löse folgende Gleichungen:
I | II | III |
---|---|---|
a) |
a) |
a) |
b) |
b) |
b) |
c) |
c) | |
d) |
Aufgabe 8
Linda hat aus 750g Ton 3 Vasen getöpfert, die alle gleich schwer sind. Stelle eine Gleichung auf, mit der man berechnen kann, wieviel jede einzelne der Vasen wiegt.
Aufgabe 9
Aufgabe 10
Eva kauft sich bei einer Rabattaktion 3 Bücher für 12€. Wieviel hat sie für jedes einzelne Buch bezahlt?
Aufgabe 11
Linda bezahlt bei ihrem Handytarif 13ct pro Minute oder SMS und hat letzten Monat 8,06€ bezahlt. Anna zahlt 3,90€ Grundgebühr, dafür nur 6ct pro Minute oder SMS. Sie hat letzten Monat 7,80€ bezahlt.
Wer hat im letzten Monat mehr telefoniert bzw. SMS geschickt? Berechne mithilfe von Gleichungen.
Lineare Gleichungssysteme
Für das Lösen von Gleichungssystemen gibt es mehrere Verfahren. Grundsätzlich sind alle Verfahren zielführend. Falls du dir noch unsicher bist, kannst du hier die Verfahren noch einmal wiederholen:
Beim Additionsverfahren überlegst du dir, welche Variable du eliminieren bzw. auf Null bringen kannst. Dann entscheidest du, was du tun musst, damit die Variable wegfällt.
Ein Beispiel:
Hier bietet es sich an, die Gleichung I mit der Gleichung II zu addieren, damit die Variable y wegfällt:
Nun kannst du die Gleichung I berechnen.
Den errechneten x-Wert kannst du nun in die Gleichung II einsetzen.
Beim Einsetzungsverfahren löst du eine Gleichung nach einer Variablen auf und setzt diesen Term in die andere Geichung ein.
Ein Beispiel:
Hier bietet es sich an die Gleichung I nach der Variablen y aufzulösen.
Nun setzt du diesen Term für y in Gleichung II ein.
Beim Gleichsetzungsverfahren löst du beide Gleichungen nach der gleichen Variablen auf und stellst diese gleich.
Ein Beispiel:
Löse beide Gleichungen nach x auf.
Nun kannst du die Gleichungen gleichsetzten.
Den errechneten y-Wert kannst du nun in eine Gleichung deiner Wahl einsetzen und die Gleichung lösen.
Überlege, welches Verfahren zum Lösen der Gleichungssysteme am sinnvollsten wäre. Denke daran, dass grundsätzlich alle Verfahren zielführend sind.
Löse das folgende Gleichungssystem in deinem Heft bzw. Collegeblock:
Addiere Gleichung I zur Gleichung II.
Berechne die Lösung für Gleichung II.
Setze den x-Wert in Gleichung I ein.
Lösung:
Multipliziere Gleichung II mit 2.
Addiere die Gleichung I zu Gleichung II.
Berechne die Lösung für Gleichung II.
Setze den x-Wert in Gleichung I ein.
Lösung:
Addiere die Gleichung I und II und die Gleichung I und III.
Berechne die Lösung für Gleichung II und III.
Setze den x-Wert und den y-Wert in Gleichung I ein.
Lösung:
Anna und Max sind mit Freunden im Freibad und kaufen etwas zu essen. Anna bestellt einen Burger und zwei Portionen Pommes. Dafür zahlt sie 5,10 €. Max bestellt zwei Burger und zwei Portionen Pommes und zahlt 7,60 € .
Wie viel kostet ein Burger? Wie viel kostet eine Portion Pommes?Die Variable x steht für die Burger. Die Variable y steht für die Portion Pommes. Das zu lösende Gleichungssystem ist:
Subtrahiere die Gleichung I von der Gleichung II.
Setze nun den x-Wert in die Gleichung I ein.
Die Variable x steht für die Anzahl der Vierbettzimmer und die Variable y steht für die Anzahl der Sechsbettzimmer. Dann ist das zu lösende Gleichungssystem:
Du kannst dir aussuchen, welches Verfahren du anwenden möchtest.
Mit dem Additionsverfahren löst du das Gleichungssystem wie folgt:
Addiere das (-4)-fache von Gleichung I zu Gleichung II.
Löse nun die Gleichung II.
Setze den y-Wert in Gleichung I ein.
Mit dem Einsetzungsverfahren löst du das Gleichungssystem wie folgt:
Löse Gleichung I nach x auf.
Setze nun die Gleichung für x in II ein und löse nach y auf.
Person A besitzt das Vermögen a, Person B besitzt das Vermögen b und Person C besitzt das Vermögen c. Wenn Person A und Person B zusammen 30 EURO mehr besitzen als Person C, so gilt
Die Variable x steht für das Vermögen der Person 1. Die Variable y steht für das Vermögen der Person 2 und die Variable z steht für das Vermögen der Person 3. Dann ist das zu lösende Gleichungssystem
Du kannst zum Beispiel das Additionsverfahren verwenden, um das Gleichungssystem zu lösen. Addiere dazu die Gleichungen I zur Gleichung II und die Gleichung I zur Gleichung III.
Löse nun die Gleichungen I und II.
Setze nun den x-Wert und den y-Wert in die Gleichung I ein.