Benutzer:Fabian WWU-5
Ich benutze im Rahmen des Seminars DiWerS das Tool Zum Projekte.
Lineare Funktionen erkennen
Sieh dir den jeweiligen Graphen oder die jeweilige Funktionsvorschrift (bzw. Gleichung) an. Stellt der Graph oder die Funktionsvorschrift eine lineare, eine andere Funktion oder gar keine Funktion dar?
Keine Funktion: Der Kreis und die zur -Achse parallelen Gerade sind keine Funktionen. Funktionen ordnen jedem x-Wert genau einen y-Wert zu. Bei Kreisen werden jedem x-Wert genau 2 y-Werte zugeordnet. Bei Geraden parallel zur y-Achse werden einem x-Wert sogar alle y-Werte zugeordnet. Also sind Kreise und Geraden parallel zur y-Achse keine Funktionen.
Lineare Funktionen: Alle Geraden, die nicht parallel zur -Achse verlaufen (also nicht senkrecht sind) und alle Funktionen, bei denen die Variabel den Exponent oder hat, sind lineare Funktionen. Die allgemeine Zuordnungsvorschrift für lineare Funktionen lautet: .
Andere Funktionen: Alle Funktionen, die keine linearen Funktionen sind, sind andere Funktionen.
a) Stelle für beide Behälter jeweils eine Funktionsvorschrift auf, mit der du zu jeder Zeit die Wassermenge berechnen kannst, die sich noch im Behälter befindet. Zeichne für beide Funktionen den Funktionsgraphen in dein Heft. (Hierbei sollte sowohl der -Achsenabschnitt, sowie auch der -Achsenabschnitt eingezeichnet sein. Wähle daher eine geeignete Skalierung.)
Behälter A:
Wir haben die Punkte und und die allgemeine Funktionsgleichung . In diese setzten wir die beiden Punkte jeweils ein:
: , wodurch folgt.
: . Da wir schon wissen, dass ist, folgt hieraus, dass ist.
Setzt man nun und in die Funktionsgleichung ein, erhalten wirBehälter B:
Wir haben die Punkte und und die allgemeine Funktionsgleichung . In diese setzten wir die beiden Punkte jeweils ein:
: , wodurch folgt.
: . Da wir schon wissen, dass ist, folgt hieraus, dass ist.
Setzt man nun und in die Funktionsgleichung ein, erhalten wirb) In Kittys Napf passen 150ml Wasser. Läuft der Napf nach 5 Stunden bei einem der beiden Behälter über, wenn dieser vorher leer war und Kitty in den 5 Stunden nichts trinkt?
Die Variable steht für unsere Stundenzahl, also setzten wir für ein.
Behälter A: Wir berechnen also . Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter A ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge die abziehen und erhalten somit, dass ca. in dem Napf sind. Dieser läuft also über.
Behälter B: Wir berechnen also . Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter B ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge die abziehen und erhalten somit, dass ca. in dem Napf sind. Dieser läuft also nicht über.