Benutzer:Fabian WWU-5
Ich benutze im Rahmen des Seminars DiWerS das Tool Zum Projekte.
Lineare Funktionen erkennen
{{Box |Aufgabe 8: Wasser für die Katze*|Marc und Susanne haben eine Katze, die Kitty heißt. Sie vergessen leider oft, ihren Wassernapf aufzufüllen. Marc und Susanne haben daher zwei Behälter gebastelt, aus denen kontinuierlich Wasser tropft. In Marcs Behälter (Behälter A) passen Wasser und er ist nach Stunden leer. In Susannes Behälter (Behälter B) passen rein und er ist erst nach Stunden leer. Jetzt möchten die beiden herausfinden, welcher Behälter sich besser für ihre Katze eignet.
a) Stelle für beide Behälter jeweils eine Funktionsvorschrift auf, mit der du zu jeder Zeit die Wassermenge berechnen kannst, die sich noch im Behälter befindet. Zeichne für beide Funktionen den Funktionsgraphen in dein Heft. (Hierbei sollte sowohl der -Achsenabschnitt, sowie auch der -Achsenabschnitt eingezeichnet sein. Wähle daher eine geeignete Skalierung.)
Behälter A:
Wir haben die Punkte und und die allgemeine Funktionsgleichung . In diese setzten wir die beiden Punkte jeweils ein:
: , wodurch folgt.
: . Da wir schon wissen, dass ist, folgt hieraus, dass ist.
Setzt man nun und in die Funktionsgleichung ein, erhalten wirBehälter B:
Wir haben die Punkte und und die allgemeine Funktionsgleichung . In diese setzten wir die beiden Punkte jeweils ein:
: , wodurch folgt.
: . Da wir schon wissen, dass ist, folgt hieraus, dass ist.
Setzt man nun und in die Funktionsgleichung ein, erhalten wirb) In Kittys Napf passen 150ml Wasser. Läuft der Napf nach 5 Stunden bei einem der beiden Behälter über, wenn dieser vorher leer war und Kitty in den 5 Stunden nichts trinkt?
Die Variable steht für unsere Stundenzahl, also setzten wir für ein.
Behälter A: Wir berechnen also . Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter A ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge die abziehen und erhalten somit, dass ca. in dem Napf sind. Dieser läuft also über.
Behälter B: Wir berechnen also . Dieser Wert gibt an, wie viel Wasser nach den fünf Stunden noch im Behälter B ist. Um zu berechnen, welche Menge im Napf ist, müssen wir von der Anfangsmenge die abziehen und erhalten somit, dass ca. in dem Napf sind. Dieser läuft also nicht über.