Geometrie im Dreieck/Geheimcode der Geometrie
Inhaltsverzeichnis
Informationskästchen
In diesem Lernpfadkapitel tauchen wir in die spannende Welt der Dreiecke ein und erforschen die Geheimnisse der Innenwinkelsumme. Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Die Innenwinkelsumme im Dreieck
Probiere an dem GeoGebra Applet aus und beobachte, was passiert.
An den folgenden Bildern kann man sehen, dass die Winkel in einem Dreieck zusammen einen gestreckten Winkel ergeben, wenn man sie aneinanderlegt.
Formuliere einen Merksatz zu dem Innenwinkelsatz in einem Dreieck anhand deiner Beobachtungen am Applet.
Fair Play im Ecken-Fußball: Ein geometrisches Problem im Sportunterricht
Die Klasse 8a spielt in der Sportstunde Ecken-Fußball. Dafür stellen sie ein Dreieck aus Bänken auf, bei dem jede Ecke ein Tor darstellt. Der Kapitän von Mannschaft A behauptet, dass das Tor von Mannschaft C viel kleiner ist als die anderen. Hilf der Klasse 8a, indem du mithilfe des Applets überprüfst, wie die Bänke angeordnet werden müssen, damit jedes Tor gleich groß ist. Ist das Fußballspiel fair oder nicht?
Weil alle drei Bänke gleich lang sind entsteht bei dem dreieckigen Spielfeld ein gleichseitiges Dreieck. Bei einem gleichseitigen Dreieck sind alle drei Winkel gleich groß. Wir wissen, dass die Innenwinkelsumme in einem Dreieck 180° beträgt. Daher führen wir folgende Rechnung durch: 180°:3= 60°
Antwort: Das Spiel ist fair, weil bei drei gleich langen Bänken drei gleich große Winkel mit jeweils 60° entstehen.Aufgabe 1
Um den verborgenen Winkel zu finden, nutzen wir die Tatsache, dass die Innenwinkelsumme eines Dreiecks immer 180° beträgt. Die gegebenen Winkel sind 50° und 60°. Der dritte Winkel x lässt sich berechnen, indem wir die Summe der beiden gegebenen Winkel von 180° abziehen: x=180°−(50°+60°) Rechnung: x=180°−110°=70° Ergebnis: Der verborgene Winkel ist 70°. Nachweis der Innenwinkelsumme: 50°+60°+70°=180°
Damit ist rechnerisch bestätigt, dass die Summe der Innenwinkel eines Dreiecks 180° beträgt.
In einem gleichschenkligen Dreieck sind die beiden Basiswinkel gleich. Hier beträgt jeder der beiden Basiswinkel 65°. Um den Spitzenwinkel x zu berechnen, nutzen wir wieder die Innenwinkelsumme eines Dreiecks, die stets 180° beträgt. Rechnung:
Die Summe der beiden Basiswinkel beträgt: 65°+65°=130°
Der Spitzenwinkel x ergibt sich aus: x=180°−130°=50° Der Winkel an der Spitze ist 50°.
Nachweis der Innenwinkelsumme: 65°+65°+50°=180° Damit ist die Innenwinkelsumme des Dreiecks rechnerisch bestätigt.
Warum ist die Summe immer 180°?
Die Innenwinkelsumme eines Dreiecks beträgt immer 180°, weil die drei Innenwinkel zusammen eine gerade Linie ergeben, wenn man die Winkel nebeneinander legt. Dies folgt aus den geometrischen Eigenschaften von Dreiecken:
Definition von Winkeln und Linien: Ein gerader Winkel entspricht 180°.
Auf dem letzten Teil eurer Jagd entdeckt ihr eine mysteriöse geometrische Nachricht: "In jedem Dreieck steht ein gestreckter Winkel, wenn man die Innenwinkel nebeneinanderlegt." Ihr sollt dies überprüfen, in dem ihr ein eigenes Dreieck konstruiert und die drei Innenwinkel nebeneinander anordnet. Zeigt, dass diese Winkel zusammen einen gestreckten Winkel (180°) ergeben und begründet rechnerisch und logisch, warum dies immer so ist.
Zusatzfrage: Überlegt, ob diese Regel auch für Vierecke gilt und begründet eure Antwort.Überlegt euch, wie ihr ein Vieleck in Dreiecke zerlegen könnt. Jedes Dreieck hat eine Innenwinkelsumme von
180°. Die Anzahl der Dreiecke im Vieleck hilft euch dabei, die gesamte Innenwinkelsumme zu berechnen. Probiert es zuerst mit einem Viereck: Wie viele Dreiecke könnt ihr darin erkennen? Dann versucht es mit einem Fünfeck. Die Formel, die euch helfen könnte, lautet: (n−2)⋅180°, wobei n die Anzahl der Ecken des Vielecks ist.Hauptaufgabe: Nachweis der Innenwinkelsumme von 180° im Dreieck
Konstruktion eines eigenen Dreiecks: Nehmen wir ein Dreieck mit den Innenwinkeln 50°, 60° und 70°. Legt die drei Winkel nebeneinander, sodass sie eine gemeinsame Ecke haben. Wenn ihr die Winkel so arrangiert, bilden sie zusammen eine gerade Linie, also einen gestreckten Winkel von 180°.
Rechnung:50°+60°+70°=180°
Die Innenwinkelsumme eines Dreiecks ergibt sich aus der Geometrie von ebenen Flächen. Ein Dreieck ist die einfachste geschlossene Form in der Ebene. Wenn man alle drei Innenwinkel nebeneinander legt, decken sie zusammen 180° ab, was der Definition eines gestreckten Winkels entspricht.
Zusatzfrage: Gilt diese Regel auch für Vierecke?
Nein, für Vierecke gilt diese Regel nicht direkt, da die Innenwinkelsumme eines Vierecks 360° beträgt.
Warum 360°? Ein Viereck kann in zwei Dreiecke unterteilt werden, und die Innenwinkelsumme eines Dreiecks ist 180°. Daher ergibt sich für ein Viereck: 180°+180°=360° Begründung: Die Anzahl der Innenwinkel in einem Polygon bestimmt die Summe der Winkel. Für ein n-Eck gilt die Formel: Innenwinkelsumme=(n−2)⋅180°
Für ein Viereck (n=4) ergibt sich: (4−2)⋅180°=360°
Aufgabe 2
Erkenne die Innenwinkel des Dreiecks und berechne die fehlenden Winkelgrößen.
Gesucht: β Lösung: α und α' bilden einen rechten Winkel (90°), das heißt α=90°-α'=90°-50°=40°
γ und γ' sind Nebenwinkel, das heißt γ'=180°-γ=180°-102°=78°
β=180°-α-γ'=180°-40°-78°=62°Berechne die fehlenden Winkelgrößen.
Gesucht: α, β, γ
Lösungsweg:
Der eingezeichnete 52° Winkel und α bilden einen gestreckten Winkel (180°), das heißt α=180°-52°=128°.
Den fehlenden Winkel β kann nun mithilfe des Innenwinkelsatzes berechnet werden: β=180°-α-20°=180°-128°-20°=32°.
Auch Winkel γ kann mithilfe des Innenwinkelsatzes berechnet werden: β=180°-53°-52°=75°.Aufgabe 3
Hier kommst du zurück zur Startseite des Kapitels: Geometrie im Dreieck