Gymnasium Marktbreit/Wissenschaftswoche 2024/11bMatheInfo

Aus ZUM Projektwiki

Forschungsfrage: Wie kann man mithilfe von Funktionen die Zukunft vorhersagen?

CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique (25911635211).jpg

Man kann mit verschiedenen Funktionstypen und Algorithmen unterschiedliche Sachverhalte näherungsweise beschreiben und daraus Prognosen für die Zukunft aufstellen.

Lineares Wachstum

Lineares Wachstum beschreibt die konstante Zu- oder Abnahme einer Größe . Diese Zunahme wird mithilfe der Konstante beschrieben. Die Differenzengleichung lautet:

Mit der Gleichung (= Anfangsbestand) wird die Rekursion (Zu- oder Abnahme einer Größe in einer bestimmten Zeit) explizit festgelegt. Im Unterricht wird statt dieser Formel oft die Formel , () verwendet.

Graphisch wird das lineare Wachstum durch eine Gerade beschrieben. Lineares Wachstum ist unbegrentzt, wenn ist.

Deshalb können in der Realität nur Abschnitte von natürlichen Vorgängen (beispielsweise das Wachstum von Pflanzen) näherungsweise durch lineares Wachstum beschrieben werden. Technische Vorgänge (beispielsweise der Füllstand einer Badewanne) können ebenfalls durch lineares Wachstum beschrieben werden, jedoch gibt es auch hier meistens eine Begrenzung (z.B. bedingt durch das Fassungsvermögen der Badewanne).[1]

Beispielaufgabe lineares Wachstum

Lineares Wachstum

Exponentielles Wachstum

Bei biologischen Wachstumsprozessen ist die Zunahme einer Größe zu Beginn oft proportional zum derzeitigen Bestand  

Beispiele: Bakterienwachstum, Wachstum durch Zellteilung, Bevölkerungswachstum, Ausbreitung von Pandemien, Abkühlungen

Die Differenzialgleichung lautet:

mit als Wachstumsfaktor

und als Wachstumsrate, %

Lösung der Gleichung: [2]

Beispielaufgabe Exponentielles Wachstum

Exponential growth no name.svg

Logistische Modelle

Logistische Modelle beschreiben Wachstumsprozesse in der Biologie und der Demographie.

Dadurch werden reale Wachstumsprozesse modelliert und es wird als Basismodell für Bevölkerungs-, Tierpopulations- und Pflanzenwachstum, Absatz für ein neues Produkt, Anzahl für Krankheiten immunisierter Personen.

Francois Verhulst hat es als erster benutzt, um die Bevölkerungsentwicklung zu beschreiben. Allerdings ist dies nur möglich gewesen, da der Belgier Benjamin Gompertz (1825) Vorarbeiten geleistet hatte.

Anfangs verläuft der Graph der Funktion meist exponentiell, nach der Zeit flacht er dann ab, sodass der typisch s-förmige Verlauf entsteht.

Das "Denken in Schritten" soll den Zugang zum inhaltlichen Verständnis erleichtern - Stichwort Proportionalität zu Bestand und Freiraum

Die Differenzialgleichung lautet:

mit , Kapazitätsgrenze (Sättigungswert und Maximum),

die Größe zum Zeitpunkt t, Größe zu Beginn des Beobachtungszeitraums, Konstante[3]

Beispielaufgabe logistische Modelle

Exam pass logistic curve.svg

Einsatz von Algorithmen und KI um Vorhersagen zu treffen

Heute werden viele allrägliche Vorhersagen, wie z.B. das Wetter, durch Algorithmen und Big Data (Verwendung von großen Datenmengen) und teilweise sogar mit Hilfe on KI vo Computer berechnet. Es gibt aber auch weniger bekannte und deutlich komplexere Anwendungszwecke, die große Auswirkungenauf die Gesellschafthaben können:

Google entwickelte beispielsweise Google Flu Trends, ein Service, der Grippewellen vorhersagen sollte, jedoch waren die Vorhersagen, trotz erster Erfolge, meist unzuverlässig. Aus diesem Beispiel lässt sich gut ableiten, was bei der Verwendung von Algorithmen für Vorhersagen unbedingt beachtet werden muss. Um eine genaue Vorhersage treffen zu können, müssen Parameter ständig angepasst werden, da sich die Umstände in der Realität ständig verändern. Außerdem muss auf die Qualität der Daten geachtet werden.

Auch gibt es bereits seit Jahren den Versuch KI und Algorithmen einzusetzen, um Verbrechen vorherzusagen uns somit präventiv zu verhindern, oder Person per Kontrollen auszuwählen. Dieses Prozedere steht jedoch stark in der Kritik, da Vorhersagen, deren Grundlage rein aus bestehenden Daten bestehen, nie absolut dem entsprechen, was passieren wird.V.a. bei KI, die ihre Parameter selbst festlegt, ist nicht einsehbar, was diese Parameter besagen. Aufgrund dieser fehlenden Möglichkeit der Überwachung, kann es zu fatalen Fehlentscheidungen (z.B. bei Parametern, die auf Falschinformationen beruhen) oder Diskriminierung kommen[4]

Blick in die Zukunft

Mit Hilfe der genannten Möglichkeiten sollen aber nicht nur Vorhersagen für kurze, sondern auch für lange Zeitintervalle getroffen werden, um besser auf medizinische, demographische und technologische Ereignisse vorbereitet zu sein. Für die zuverlässige Umsetzung und Nutzung müssen bestehende Programme und Algorithmen jedoch ständig weiterentwickelt, ergänzt und überarbeitet werden.[5]

Literaturverzeichnis

  1. Ableitinger, C., "Biomathematische Modelle im Unterricht - Fachwissenschaftliche und didaktische Grundlagen und Unterrichtsmaterialien", 1. Auflage 2010, S.32 ff. (2.1.1 Lineares Wachstum)
  2. Ableitinger, C., "Biomathematische Modelle im Unterricht - Fachwissenschaftliche und didaktische Grundlagen und Unterrichtsmaterialien", 1. Auflage 2010, S.32 ff. (2.1.2 Exponentielles Wachstum)
  3. Ableitinger, C., "mathematiklehren - Erfolgreich unterrichten: Konzepte und Materialien", S.31 ff. (Ein Schritt nach dem anderen - Diskretisieren als Zugang zum logistischen Modell)
  4. Drösser, C., "Total berechenbar? Wenn Algorithmen für uns entscheiden", 2016, S.117 ff. (6. Vorhersagen - Wie aus Korrelationen Prognosen werden)
  5. Drösser, C., "Total berechenbar? Wenn Algorithmen für uns entscheiden", 2016, S.117 ff. (6. Vorhersagen - Wie aus Korrelationen Prognosen werden)