Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen

Aus ZUM Projektwiki

Funktionen

Funktionen
Darstellungen von Funktionen.png
Eine Funktion ist eine eindeutige Zuordnung. Sie lässt sich auf verschiedene Arten darstellen:
  • als Text
  • als Wertetabelle
  • als Funktionsgleichung
  • als Graph

Lineare Funktionen

Hefteintrag - Lineare Funktionen erkennen

Eine Funktion, deren Funktionsgleichung die Form f(x) = mx + b hat, heißt lineare Funktion. Der Graph einer linearen Funktion ist immer eine Gerade mit der Steigung m und dem y-Achsenabschnitt b. Der Graph schneidet die y-Achse im Punkt P(0Ib).

Lineare Funktionen erkennen:

Lineare Funktionen erkennen Zusammenfassung.png

Diese Eigenschaften werden in folgendem Lied besungen.
Hier heißt die Funktionsgleichung f(x) = mx + n (n statt b, du findest in verschiedenen Büchern verschiedene Bezeichnungen).


Übung: Lineare Funktionen erkennen
Entscheide in den folgenden Apps, ob die Funktion linear ist oder nicht. In der letzten App gib die Funktionsgleichung an oder lies m und b ab.


Wertetabelle erstellen

Berechne den y-Wert der Funktion, indem du den x-Wert in die Funktionsgleichung einsetzt.
Beispiel Bootsverleih: y = 2x + 5
Für x = 1 gilt: y = 2 · 1 + 5
                         = 7
Für x = 2 gilt: y = 2 · 2 + 5
                         = 9
Übertrage die Werte in die Wertetabelle:

x 0 1 2 3 4 ...
y 5 7 9 11 13 ...


Funktionsgraphen zeichnen

Trage die Punkte der Wertetabelle in ein Koordinatenkreuz ein und zeichne den Graphen der Funktion.
Erinnerung:"Zuerst nach rechts und dann nach oben, dann werde ich dich loben" bzw. "Zuerst Anlauf nehmen, dann hoch springen."
F(x)=2x+5 mit Punkten.png


Lineare Funktionen: Funktionsgleichung aufstellen
  • Lies den y-Achsenabschnitt b ab.
  • Zeichne das Steigungsdreieck und bestimme damit die Steiung m.

Beispiele:

1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):

Steigungsdreieck m ganze Zahl (positiv).png

2. Beispiel: m ist eine negative ganze Zahl:

Steigungsdreieck m ganze Zahl (negativ).png

3. Beispiel: m ist ein Bruch (positiv):

Steigungsdreieck m Bruch (positiv).png

4. Beispiel: m ist ein Bruch (negativ):

Steigungsdreieck m Bruch (negativ).png

Beispiel 1 (leicht): m ist eine natürliche Zahl
Funktionsgleichung einer Geraden bestimmen m=2.png
Beispiel 2 (mittel): m ist eine negative ganze Zahl
Funktionsgleichung einer Geraden bestimmen m=-1,5.png
Beispiel 3 (schwer): m ist ein Bruch
Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png
Übung: Bestimmen der Funktionsgleichung einer Geraden
Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.
leicht (*)

mittel (**)

schwer (***)



Lineare Funktionen: Graph zeichnen
  • Zeichne den y-Achsenabschnitt b ein. P(0|b)
  • Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
  • Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.

Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.

Schritt 1Gerade zur Gleichung zeichnen Schritt 1.png
Schritt 2Gerade zur Gleichung zeichnen 2. Schritt.png
Schritt 3Gerade zur Gleichung zeichnen Schritt 3.png

Du kannst auch mithilfe von zwei Punkte die Gerade zeichnen bzw. die Funktionsgleichung bestimmen. Wie dur vorgehst, zeigt das Video.

Quadratische Funktionen

Nullstellen bestimmen

Punktprobe