Dieser Lernpfad befindet sich aktuell im Aufbau.
Info
In diesem Lernpfadkapitel lernst du
- wie du von Pyramiden den Oberflächeninhalt schätzen kannst.
- wie du von Pyramiden den Oberflächeninhalt berechnen kannst.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!
Wiederholung(Optional)
Um die Oberfläche einer Pyramide zu bestimmen, ist es wichtig, dass du weißt, wie man den Flächeninhalt von Quadraten und von Dreiecken bestimmt. Wenn du dich noch daran erinnerst, wie man diesen bestimmt, trage die Formeln direkt auf deinem Arbeitsblatt ein und starte bei "Oberflächeninhalte berechnen". Wenn du dir noch etwas unsicher bist und eine kurze Wiederholung brauchst, bearbeite die folgenden Aufgaben.
Quadratischen Flächeninhalt berechnen
Aufgabe 1: Flächeninhalt vom Quadrat
Berechne den Flächeninhalt des folgenden Quadrates:
Gib im zweiten Kästchen die richtige Einheit an.
Die Formel zur Berechnung eines quadratischen Flächeninhalts lautet:
Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"
Info
Übertrage die Formel zur Berechnung eines quadratischen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").
Dreieckigen Flächeninhalt berechnen
Aufgabe 2: Flächeninhalt vom Dreieck
Berechne den Flächeninhalt des folgenden Dreiecks:
Gib auch hier im zweiten Kästchen die richtige Einheit an.
Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet:
Flächeninhalte werden in cm² angegeben. Um "²" einzufügen, drücke gleichzeitig die Tasten "Alt Gr" und "2"
Info
Übertrage die Formel zur Berechnung eines dreieckigen Flächeninhaltes auch auf dein Arbeitsblatt (die vollständige Formel findest du unter "Tipp 1").
Falls du zu den beiden Themen weitere Aufgaben zur Wiederholung benötigst, klicke hier
Aufgabe 3: Quadratische Flächeninhalte berechnen
a)
b)
c)
a)
b)
c)
Aufgabe 4: Dreieckige Flächeninhalte berechnen
a)
b)
c)
a)
b)
c)
Aufgabe 5: Dreieckige Flächeninhalte berechnen Teil 2
a)
b)
c)
a)
b)
c)
Oberflächeninhalte berechnen
Pyramiden im Alltag
Lies dir eine der folgenden Kurzgeschichten durch und löse anschließend den nachstehenden Arbeitsauftrag.
1981 initiierte der damalige französische Staatspräsident das Projekt „Grand-Louvre“. Im Rahmen dessen wurde der Architekt Ieoh Ming Pei beauftragt, die heutige Glaspyramide im Zentrum des Palastes zu entwickeln. Die Blaupause steht und die Vision ist klar: Die Pyramide soll komplett mit Glas umfasst werden! Nun geht es darum zu ermitteln, wie viele der rautenförmigen
Glasscheiben hergestellt werden müssen.
Die Cheops-Pyramide ist die älteste und größte der drei Pyramiden von Gizeh und wird deshalb auch als „Große Pyramide“ bezeichnet. Die höchste Pyramide der Welt wurde als Grabmal für den Pharao Cheops etwa 2620 v. Chr. errichtet und gilt heutzutage als eines der sieben Weltwunder der Antike. Natürlich mussten ausreichend
Steine gehauen werden, um den Bau zu vollenden. Der zuständige Untertan stand vor der Aufgabe, die passende Anzahl zu berechnen.
Im Zweiten Weltkrieg wurde der St.-Paulus-Dom in Münster durch Bombentreffer schwer beschädigt. In den Jahren 1946 bis 1956 wurde der Dom wieder aufgebaut. Unter anderem mussten die pyramidenförmigen Kirchturmspitzen wieder mit neuen
Dachziegeln belegt werden, doch die Materialien in der Nachkriegszeit waren knapp. Somit soll eine möglichst passende Anzahl berechnet werden.
Aufgabe 6: Materialien berechnen
Überlege dir bei einer der Geschichten, wie man das Problem mathematisch lösen könnte. Schreibe deine Überlegungen auf und stell dir dabei vor, du müsstest deinen Arbeitgeber von deinen Überlegungen überzeugen.
Kannst du dein Vorgehen auch verallgemeinern und auf die anderen Probleme anwenden?
Formel aufstellen
Greifen Darstellungen von vorherigen Kapiteln auf, nutzen diese um das Vorgehen zu beschreiben
Merksatz: O = M + G <-- Explizierung für quadratische Grundfläche
Problem mit überflüssigen Informationen: Extrahieren von relevanten Daten
Schülerlösungen vorstellen und bewerten lassen
Lösung: Diese ist/sind richtig
Übungsaufgaben
Aufgaben, die einen digitalen Mehrwert haben
Übungsaufgaben mit Schwierigkeitsstufen (Dezimalbrüche, Maßeinheiten, Perspektive, ...) auf Arbeitsblatt
//Arbeitsblatt: Sicherung durch "Abschreiben" der Formel
Pyramiden schätzen
Einschätzungsaufgabe - Memory
Verschiedene Schwierigkeitstypen zum Schätzen (1. einen Parameter + Formel, 2. keine Vorgaben mehr <-- aufs Arbeitsblatt, 3. Streetview link vom Louvre)
Vertiefen und Vernetzen
Aufgabe x: Pyramidenstumpf
Das Slovak Radio Building in Bratislava (Slowakei) hat die Form eines umgedrehten quadratischen Pyramidenstumpfes. Die Seiten sowie das Dach des Gebäudes sollen eine neue Glasfassade erhalten.
[Daten für die Aufgabe:
Höhe des Stumpfes: 42,7 m
Seitenhöhe des Stumpfes: 49,7 m
Breite Stumpf unten: 22,59 m
Breite Stumpf oben: 74,33 m]
[Aufgabenstellung (Wie viel Glas wird für die neue Fassade und das Dach benötigt?, evtl. als Volumen ausrechnen und Preis pro m
3)]
Die Seitenflächen des Gebäudes sind Trapeze.
Hier steht die Lösung
Aufgabe y: Verschiedene Grundflächen
a) Rechteck
b) Tipi
[Einleitender Text]
[Daten für die Aufgabe: Achteckiges Tipi
Seitenhöhe des Tipis: m
Kantenlänge des Achtecks: dm
Ausgeschnittener Halbkreis mit Radius: cm]
[Aufgabenstellung (m
2 Plane mit ausgeschnittenem Eingang)]
Hier steht der Tipp.
Hier steht die Lösung.
Aufgabe z: Zusammengesetzte Körper
zusammengesetzte Körper (Dachstuhl/Fachwerkhaus/Kirchturm)
??? Nikolaushäuschen (Quader mit Pyramidendach) selbst gebaut (Frage: Wie viel Pappe braucht man, wenn alle SuS einer Klasse ein Häuschen bauen sollen?, Verschnitt 20% miteinrechnen) ???