Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel beschäftigst du dich mit Geraden im Raum. Du lernst, Geraden im Raum durch Vektoren zu beschreiben, Parameterdarstellungen und Spurpunkte von Geraden zu bestimmen, die Lage von Geraden im Raum und zueinander zu bestimmen sowie Geradenscharen zu bestimmen.

Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:

  • Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit und
  • Aufgaben mit grünem Streifen sind Knobelaufgaben.
Wir wünschen dir viel Erfolg!

Geraden und ihre Darstellungsformen

Parameterdarstellung einer Geraden

Definition

Jede Gerade lässt sich durch eine Gleichung der Form mit beschreiben.

  • Diese Vektorgleichung bezeichnet man als Parameterdarstellung oder Parametergleichung der Geraden mit dem Parameter .
  • Setzt man für irgendeine Zahl in die Parameterdarstellung der Geraden ein, so ergibt sich der Ortsvektor (auch genannt) eines Punktes der Geraden .
  • Der Vektor heißt Stützvektor. Er ist der Ortsvektor zu einem Punkt (auch Aufpunkt genannt), der auf der Geraden liegt.
  • Der Vektor heißt Richtungsvekor.

Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:


Im Folgenden kannst du sehen, wie die Gerade vom Stützvektor, Richtungsvektor und Parameter abhängt:

GeoGebra


 ????Anmerkung zu den Lösungen: Wie du wahrscheinlich im obigen Video mitbekommen hast, gibt es unendlich viele Lösungen. Daher sind auch Vielfache der Richtungsvektoren oder andere Stützvektoren, wenn sie auf der Geraden liegen, möglich.????


Aufgabe 1: Geradengleichung aufstellen (zwei gegebene Punkte)

Die Gerade geht durch die Punkte und . Gib zwei Gleichungen für an.

a) ,

b) ,

c) ,

Zwei mögliche Geraden sind und .

Zwei mögliche Geraden sind und .

Zwei mögliche Geraden sind und .

Du kannst aber auch eine Gerade aufstellen, die durch einen Punkt verläuft und parallel zu einer anderen Gerade oder zu einer der Koordinatenachsen ist.


Aufgabe 2: Geradengleichung aufstellen (gegebener Punkt und gegeben Parallelität)

Stelle jeweils eine Geradengleichung auf.

a) Die Gerade geht durch den Punkt und verläuft parallel zur geraden .

Wann verlaufen zwei Vektoren parallel zueinander? Übertrage diese Kenntniss auf Geraden.

b) Die Gerade geht durch den Punkt und verläuft parallel zur -Achse.

Wie könnte eine Geradengleichung der -Achse lauten? Danahc hilft dir das Vorgehen aus a) weiter.

c) Die Gerade geht durch den einen beliebigen Punkt und verläuft parallel zur -Achse.

Diese Aufgabe funktioniert ähnlich zu b).

Eine mögliche Gerade ist .

Eine mögliche Gerade ist .

Eine mögliche Gerade ist .

Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:


Aufgabe 3: Geraden im Koordinatensystem

Kreuze die richtige(n) Antwort(en) an!



Falls du nicht mehr weißt, was die -, - und -Ebene sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:

Die -Ebene ist die Ebene, die von der - und -Achse aufgespannt wird (im Bild genannt). Entsprechendes gilt für die - (im Bild ) und -Ebene (im Bild ).

Die Koordinatenebenen

Punktprobe

Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade der daneben liegt, erfährst du im folgenden Video:


Merksatz: Punktprobe

Liegt ein Punkt auf der Geraden g definiert durch mit , so gibt es genau ein , welches die Gleichung erfüllt. Erfüllt kein diese Gleichung, liegt der Punkt nicht auf der Geraden.


Aufgabe 4: Punktprobe mit einer Geraden I

Überprüfe, ob der Punkt auf der Geraden liegt.

a) ,

b) ,

Die Punktprobe ist erfüllt für , d.h. der Punkt liegt auf der Geraden .

Die Punktprobe ist nicht erfüllt, d.h. der Punkt liegt nicht auf der Geraden .


Aufgabe 5: Punktprobe mit einer Geraden II

Für welchen Wert mit liegt der Punkt auf der Geraden ?

a) ,

b) ,

c) ,

Die Punktprobe ist für mit erfüllt.

Die Punktprobe ist für mit erfüllt.

Die Punktprobe ist für mit erfüllt.

Spurpunkte einer Geraden

Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, zeigt das folgende Video:


Merksatz: Spurpunkte einer Geraden

Merksatz

Strecken

Graphische Darstellung von Geraden im Raum

Lagebeziehungen von Geraden

Hinweis
In diesem Abschnitt beschäftigst du dich mit der Lagebeziehung von Geraden im Raum.


Definition

Wir unterscheiden die Lage zweier Geraden in identisch, parallel, geschnitten und windschief. Um die Lage zweier Geraden zu ermitteln, betrachtet man zunächst die Richtungsvektoren. Sind diese zueinander kollinear (sind Vielfache voneinander), so können die Geraden lediglich identisch oder parallel sein.

Identische Geraden

Parallele Geraden

Um nun zu untersuchen, ob die Geraden parallel oder identisch sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden identisch. Andernfalls sind die Geraden echt parallel.


Aufgabe 1: Lage erkennen

Wie verlaufen die folgenden Geraden zueinander?

a) und

b) und

c) und

Die erste Antwort lautet identisch. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren mit ein Vielfaches voneinander (=kollinear) sind. Da beide Ortsvektoren identisch sind, liegt ein Punkt sind die Geraden identisch.
Die zweite Antwort lautet parallel. Die beiden Geraden sind parallel. Während die beiden Richtungsvektoren kollinear, sogar identisch, sind liegt der Ortsvektor von nicht auf der Geraden von, mit .
Die dritte Antwort lautet identisch. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind () und der Ortsvektor der einen Gerade auf der anderen Gerade ist: .


Definition

Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich schneiden oder windschief zueinander sein.

Geschnittene Geraden

Windschiefe Geraden

Um nun zu untersuchen, ob sich die Geraden schneiden oder zueinader winschief sind, müssen wir schauen, ob sich ein Schnittpunkt berechnen lässt. Hierzu setzen wir die Geradengleichungen gleich und formen um. Erhalten wir einen Schnittpunkt S, so schneiden sich die Geraden im Punkt S. Andernfalls sind diese Geraden windschief zueinander.


Aufgabe 2: Lage erkennen

Wie verlaufen die folgenden Geraden zueinander?

a) und

b) und

c) und

Die erste Antwort lautet schneiden. Die beiden Geraden schneiden sich im Punkt .
Die zweite Antwort lautet schneiden. Die beiden Geradenschneiden sich.
Die dritte Antwort lautet windschief. Die beiden Geraden sind windschief zueinander. Dies sehen wir daran,


Aufgabe 3: Lage erkennen

Löse das Quiz und mache dir deinen eigenen Lernzettel


Merksatz


Zwei Geraden...

sind identisch

  • Richtungsvektoren kollinear (= Vielfache voneinander)
  • Ortsvektor der einen Geraden liegt auf der anderen Geraden

sind parallel

  • Richtungsvektoren kollinear (= Vielfache voneinander)
  • Ortsvektor der einen Geraden liegt nicht auf der anderen Geraden.

schneiden sich

  • Richtungsvektoren nicht kollinear (= Vielfache voneinander)
  • Bei dem Versuch einen Schnittpunkt zu berechnen, kommt eine wahre Aussage in Form eines Punktes heraus

sind zueinander windschief

  • Richtungsvektoren nicht kollinear (= Vielfache voneinander)
  • Bei dem Versuch einen Schnittpunkt zu berechnen, kommt eine falsche Aussage heraus

.


Aufgabe 4:

Flugerlaubnis erteilen?

Ein wichtiger Bestandteil der Flugsicherung sind die Fluglotsen der "Deutschen Flugsicherung" (DFS). Sie koordinieren und überwachen jährlich Millionen Flüge im deutschen Luftraum. Am heutigen Tag wollen zwei Flugzeuge starten. Hierzu gehört das Flugzeug der Fluglinie Aer. Es startet bei und befindet sich nach 5sek auf . Ebenfalls möchte das Flugzeug der Fluglinie Amadeus in die Luft. Dies startet in . Pro Sekunde legt es eine Strecke von 175,49m zurück und besitzt einen Richtungsvektor von .

Es kam zu einem riesigen Stromausfall und der Fluglotse ist sich unsicher. Hilf ihm die Antworten auf folgende Fragen zu finden:

a) Wie lauten die Geradengleichungen der einzelen Flugzeuge?

b) Wie schnell (in km/h) fliegen die einzelnen Flugzeuge?

c) Können alle Flugzeuge starten, ohne dass es zu einer Kollision kommt?


Zu Aer: Setze alle gegebenen Daten in eine allgemeine Parameterdarstellung ein und forme um.

Zu Amadeus: Um den Richtungsvektor zu berechnen, benötigst du die Forme zur Berechnung der Länge eines Vektoren:

.
Geschwindigkeit kann man in verschiedene Einheiten angeben, z.B.: km/h, m/s etc.. Nachdem du die Länge der Strecke nach einer Sekunde berechnet hast, musst du dies von m/s zu km/h umwandeln.
Nur weil sich zwei Geraden schneiden heißt es noch nicht direkt, dass eine Kollision vorherrscht.


Flugzeug Aer:

Dies erhalten wir, indem wir folgendes berechnen: . Dies schreiben wir in ein Gleichugssystem um und formen es zu x,y,z um:

Flugzeug Amadeus:

Dies erhalten wir wie folgt: Wir kennen den Richtungsvektor: . Nun müssen wir z berechnen. Im Text steht, dass das Flugzeug pro Sekunde eine Länge von 175,49m fliegt. Das bedeutet, dass der Richtungsvektor eine Länge von 175,49 beträgt. Dies können wir mit der Formel der Länge eines Vektor berechnen:



Indem wir beide Seiten zum Quadart nehemn, entfällt die Wurzel und es folgt:



Wir formen zu um und ziehen dann die Wurzel. Wir erhalten 83,998 und runden auf 84.

Wobei t für die Zeit in Sekunden steht.

Wir berechnen die Geschwindigkeit, indem wir die Länge des Richtungsvektors berechnen. Dies erfolgt mit der Formel:.

Fugzeug Aer: .

Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle L=145,95}} .

Wir erhalten also eine Geschwindigkeit von 145,95 m/s. Es gilt: 3,6km/h=1m/s. Umgerechnet in km/h sind das also:

525,42km/h.

Flugzeug Amadeus: Das Flugzeug Amadeus legt laut Text nach einer Sekunde eine Strecke von 175,49m zurück. Damit hat es eine Geschwindigkeit von 175,49m/s.Umgerechnet in km/h sind das also:

631,76km/h.

Flugzeug Aer und Amadeus: Sie schneiden sich für . Dies erhalten wir, indem wir beide Funktionen gleichsetzen und in ein Gleichungssystem umformen:


Da es jedoch nicht der gleiche Zeitpunkt ist, kommt es zu keiner Kollision.

Geraden und ihre Anwendungen