Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate
Inhaltsverzeichnis
Allgemeine Hinweise zur Bearbeitung
Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Nach dem Bearbeiten des Pfades kannst Du die Formeln für beide Änderungsraten angeben und anwenden, die Änderungsraten in unterschiedlichen sachlichen Anwendungen berechnen und den Zusammenhang zwischen Sekanten- und Tangentensteigung erläutern. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzeichnet sind:
- In Aufgaben, die orange gekennzeichnet sind kannst Du "Gelerntes wiederholen und vertiefen"
- Aufgaben, die blau gekennzeichnet sind "Aufgaben mitlleren Schwierigkeit"
- Aufgaben mit grüner Hinterlegung sind "Knobelaufgaben", dabei sind die Aufgaben für den LK mit einem ⭐ gekennzeichnet.
Viel Erfolg und viel Spaß!Grundlegende Begriffe und Formeln
Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:
Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion. Die Sekante (der Begriff bedeutet die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet.
Um die lokale Änderungsrate zu bestimmen, verkleinern wir den Abstand zwischen und , wählen also immer näher bei (dafür schreibst Du ). Dabei geht die Sekante in die Tangente über, eine Gerade also, die den Funktionsgraphen in genau einem Punkt berührt. Die Steigung der Tangente ist genau die (lokale) Änderungsrate der Funktion in diesem Punkt.
Die lokale Änderungsrate in einem Punkt nennt man Differenzialquotient und berechnet diese als Grenzwert (Du schreibst dafür ) der Sekantensteigungen:
Setzt man für den Abstand von zu so gilt die Formel:
Die Ableitung (oder Ableitungsfunktion) beschreibt lokal das Verhalten der Funktion an beliebigen Stelle x.
Aufgaben zum Wiederholen und Vertiefen
Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.
a) Gegeben ist die Funktion auf dem Intervall [0; 2]
b) Gegeben ist die Funktion auf dem Intervall [1; 2]
c) Gegeben ist die Funktion auf dem Intervall [-2; -1]
d) Gegeben ist die Funktion auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird?
Du benötigst für diese Aufgabe Papier und Stifte, um Notizen zu machen.
In dem Applet ist der Graph der Funktion f(x) = 0,1 \cdot x² + 1 Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle dargestellt. * '''''Verändere mithilfe des Schiebereglers für Δx den Abstand zwischen den Punkten A und B.''''' * '''''Notiere für Δx = 3,5 ; 3,0 ; 2,5; 2,0; 1,5; 1,2; 1,1 und 0,5 die Steigung k der Sekanten durch die Punkte A und B.''''' * '''''Welche Steigung k der Tangente im Punkt A lässt sich als Grenzwert der Sekantensteigungen vermuten?''''' {{Lösung versteckt|1 = um die Vermutung zu überprüfen, schiebe den Regler so weit, dass Δx=0 ist|2= Tipp|3=Tipp}} * '''''Führe dieselbe Aufgabe für die Funktion f(x) = 0.1 \cdot x² durch. Was stellst Du fest? Ist es überraschend?''''' <ggb_applet id="KMv29tYV" width="800" height="580" border="888888" /> {{Lösung versteckt|1 = 'Die Steigung der Tangenten beider Funktionen beträgt im Punkt A m=0,6. Die notierten Werte der durchschnittlichen Änderungsraten nähern sich dieser Zahl an, wenn das Intervall Δx sich der Zahl 0 nähert. Das entspricht genau der Definition der Tangente als Grenzwert der Sekantensteigungen. Der gleiche Wert für die zweite Funktion sollte auch nicht überraschen, denn diese ist die gleiche Funktion, lediglich um 1 nach unten verschoben. |2=Lösung|3=Lösung}} |Farbe= {{Farbe|orange}} |3= Arbeitsmethode}} {{Box|1=<span style="color: orange">3. Aufgabe. Riskante Schlittenfahrt</span>|2= [[Datei:Kinder auf einem Schlitten.JPG|links|rahmenlos|mini]] Im kalten Winter unter idealen Bedingugnen (keine Reibung, kein hektisches Lenken und kein unnötiges Bremsen) schlitterst Du einen Hang mit 5% Gefälle hinab. Der von deinem Schlitten zurückgelegte Weg wird annähernd durch den Term <math>w(t) = \tfrac{1}{4}t^2} beschrieben. Dabei steht t für die Zeit nach dem Start in Sekunden und w(t) für die seit dem Start zurückgelegte Strecke in Metern. 100m weit von deinem Startpunkt entfernt steht auf der Schräge ein Baum.
a) Wann prallt dein Schlitten auf den Baum?
Den Wert t = -20 können wir in dem Sachzusammenhang verwerfen (Du sitzt schließlich auf dem Schlitten, nicht in der Zeitmaschine), also triffst Du nach 20s den Baum.
b) Welche Geschwindgkeit hat dein Schlitten zum Zeitpunkt des Aufpralls?
Im Teil a) hast Du berechnet, dass der Aufprall nach 20s passiert. Du musst also den Differentialquotient (oder Wert der Ableitung) im t= 20 berechnen. Am einfachsten mit der Formel:
. Im letzten Rechenschritt muss Du überlegen, was mit dem Ausdruck passiert wenn h = 0 ist. Zum Zeitpunkt des Aufpralls hast Du also eine Geschwindigkeit von 10 m/s.Mittelschwere Aufgaben
a) Ordne die Begriffe und Abbildungen richtig zu, indem Du sie auf das rechte oder linke Feld ziehst.
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Gegeben sind die Funktionen:
- und der Punkt (2; f(2))
- und der Punkt (1; h(1))
a) Zeichne die Graphen der Funktionen f(x) und h(x) sowie nach Augenmaß die Tangenten in den angegebenen Punkten. Bestimme die Steigung der Funktion im gegebenen Punkt durch Ablesen der Tangentensteigung.
b) Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Deine Ergebnisse mit den Ergebnissen aus Teil a).
Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: . Hier entspricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle.
Für die Funktion f(x) rechnest Du also:
, wenn Du h=0 einsetzt.
Für die Funktion h(x) rechnest Du:
Wenn Du sauber gezeichnet und abgelesen hast, sind die Antworten in den Teilen a) und b) gleich.
Du benötigst für die Aufgabe Papier, Stifte und einen Taschenrechner.
Die Verbreitung der Schockwelle einer atomaren Explosion kann man annähernd mit folgender Funktion beschreiben:
Dabei steht die Variable t für die Zeit nach der Explosion, gemessen in Sekunden, und die abhängige Variable R für den Radius der Verbreitung gemessen in Kilometern.
a) Berechne die mittlere Ausbreitungsgeschwindigkeit der atomaren Explosion in folgenden Zeitabschnitten:
- ersten drei Sekunden nach der Explosion
- ersten zehn Sekunden nach der Explosion
- im Zeitintervall zw. der 7. und der 10. Sekunde
Im Teil a) wird nach dem Differenzenquotient gefragt, denn Du mit der Formel : berechnest. Für die ersten 3 Sekunden heißt im Intervall [0; 3],somit: km/s
Die Lösung für die ersten 10 Sekunden lautet : 19,2 km/s. Im Zeitintervall zwischen der 7. und der 10. Sekunde beträgt die mittlere Ausbreitungsgeschwindigkeit : 30,4 km/sb) Berechne die Geschwindigkeit der Ausbreitung im angegebenen Zeitpunkt:
- zweite Sekunde nach der Explosion
- zehnte Sekunde nach der Explosion
Wird nach der Geschwindigkeit zu einem Zeitpunkt gefragt, so handelt es sich um die lokale Änderungsrate, Du musst also den Differentialquotienten berechnen. Die Formel hast Du bereits in der Aufgabe 4 benutzt. Für die Geschwindigkeit in der zweiten Sekunde rechnest Du also:
km/s.Die momentane Ausbreitungsgeschwindigkeit in der Sekunde 10 beträgt bereits : 35,2 km/s
Knobelaufgaben
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Ein Teil der Achterbahn lässt sich durch den Graphen der Funktion: beschreiben.
'a) Zeichne den Graphen der Funktion f(x) .Vervollständige folgende Tabelle, in dem Du in den angegebenen Punkten nach Augenmaß Tangenten zeichnest und deren Steigungen m durch Ablesen bestimmst.
b) Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a).
Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem.
c) Berechne den Differentialquotient (Ableitung) von in einem beliebigen Punkt. Vergleiche Dein Ergebnis mit dem Ergebnis von Teil b).
Du benötigst für die Aufgabe Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Gegeben ist eine Funktionenschar durch die Gleichung und
a) Für welches t ist die 2. Winkelhalbierende die Tangente im Ursprung?
Die Tangente im Ursprung hat die Formel . Die Steigung m berechnest Du als Differentialquotient an der Stelle x=0, bzw. als Wert der ersten Ableitung an der Stelle 0. . Also hat die Tangente im Ursprung die Formel . Diese Tangente ist genau dann die 2. Winkelhalbierende, wenn die Steigungen beider Geraden übereinstimmen:
Also: . Du erhältst somit (unter Berücksichtigung, dass laut der Aufgabe t>0 gilt), dass für die Tangente im Ursprung die 2. Winkelhalbierende istb) Untersuche, an welchen Stellen die Funktionen der Schar eine waagerechte Tangente haben?
Für waagerechte Tangenten gilt : Die Steigung ist 0, also
An den Stellen x = t und x = -t haben die Funktionen der Schar eine waagerechte Tangente.