Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate
Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten.Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzheichnet sind:
- Schwierigkeitsstufe I mit gelben Titel: sind leichte Verständnis- und Rechenaufgaben zum Einstieg
- Schwierigkeitsstufe II mit blauen Titel: normale, mittelschwere Aufgaben zum üben und vertiefen.
- Schwierigkeitsstufe III mit grünen Titel: herausfordernde Aufgaben
Viel Erfolg!
Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:
Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion. Die Sekante (der Begriff bedeutet aus dem Lateinischen übersetzt die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet:
Ein Beispiel:
Der Verkehrszeichen gibt an, dass der durchschnittlicher Höhenunterschied (also die durchschnittliche Änderungsrate) auf dieser Strecke 10 Höhenmeter pro 100m Wegstrecke beträgt. Die echte Strasse selbst verläuft natürlich nicht als exakt gerade Linie mit einer konstanten Steigung.