Geometrie im Dreieck/Geheimcode der Geometrie: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 20: | Zeile 20: | ||
{{Box|1=Aufgabe 2.1|2=Berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.|3=Arbeitsmethode}} | {{Box|1=Aufgabe 2.1|2=Berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.|3=Arbeitsmethode}} | ||
[[Datei:Aufgabe 2 orange.png|zentriert|rahmenlos|500x500px]] | [[Datei:Aufgabe 2 orange.png|zentriert|rahmenlos|500x500px]] | ||
{{Lösung versteckt|1=Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen|2=Tipp anzeigen|3= | {{Lösung versteckt|1=Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen.|2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1=[[Datei:Lösung 2 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=[[Datei:Lösung 2 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | ||
=== Aufgabe 2.2 === | === Aufgabe 2.2 === | ||
Erkenne die Innenwinkel und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme. | Erkenne die Innenwinkel und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme. | ||
[[Datei:Aufgabe pink.jpg|zentriert|rahmenlos|500x500px]] | [[Datei:Aufgabe pink.jpg|zentriert|rahmenlos|500x500px]] | ||
{{Lösung versteckt|1=Überlege zunächst, was die Innenwinkel und was die Außenwinkel sind.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | |||
{{Lösung versteckt|1=Beta und Beta' sind Nebenwinkel. Wie kannst du herausfinden, wie groß Beta ist?|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | |||
{{Lösung versteckt|1=[[Datei:Lösung pink.jpg|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=[[Datei:Lösung pink.jpg|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | ||
=== Aufgabe 2.3 === | === Aufgabe 2.3 === |
Version vom 7. November 2024, 20:08 Uhr
Informationskästchen
Einführung
Stimmt das auch wirklich? Wenn ja, dann müssten die drei Innenwinkel im Dreieck einen gestreckten Winkel ergeben. Das sollte dann also in etwa so aussehen:
Reiße die zwei Winkel α und β deines Dreiecks (auf dem Arbeitsblatt) ab und prüfe, ob man sie an der Spitze zu einem gestreckten Winkel mit 180° anordnen kann.
Aufgabe 1
siehe Arbeitsblatt
Aufgabe 2
Aufgabe 2.1
Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen.
Aufgabe 2.2
Erkenne die Innenwinkel und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Überlege zunächst, was die Innenwinkel und was die Außenwinkel sind.
Beta und Beta' sind Nebenwinkel. Wie kannst du herausfinden, wie groß Beta ist?
Aufgabe 2.3
Finde die Größe der Innenwinkel heraus und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Aufgabe 3
Aufgabe 4 (Sicherung)