Geometrie im Dreieck/Geheimcode der Geometrie: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 20: | Zeile 20: | ||
{{Box|1=Aufgabe 2.1|2=Berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.|3=Arbeitsmethode}} | {{Box|1=Aufgabe 2.1|2=Berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.|3=Arbeitsmethode}} | ||
[[Datei:Aufgabe 2 orange.png|zentriert|rahmenlos|500x500px]] | [[Datei:Aufgabe 2 orange.png|zentriert|rahmenlos|500x500px]] | ||
{{Lösung versteckt|1=Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen|2=Tipp anzeigen|3=Lösung verbergen}} | |||
{{Lösung versteckt|1=[[Datei:Lösung 2 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=[[Datei:Lösung 2 orange.png|zentriert|rahmenlos|500x500px]]|2=Lösung anzeigen|3=Lösung verbergen}} | ||
=== Aufgabe 2.2 === | === Aufgabe 2.2 === |
Version vom 7. November 2024, 20:03 Uhr
Informationskästchen
Einführung
Stimmt das auch wirklich? Wenn ja, dann müssten die drei Innenwinkel im Dreieck einen gestreckten Winkel ergeben. Das sollte dann also in etwa so aussehen:
Reiße die zwei Winkel α und β deines Dreiecks (auf dem Arbeitsblatt) ab und prüfe, ob man sie an der Spitze zu einem gestreckten Winkel mit 180° anordnen kann.
Aufgabe 1
siehe Arbeitsblatt
Aufgabe 2
Aufgabe 2.1
Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen
Aufgabe 2.2
Erkenne die Innenwinkel und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Aufgabe 2.3
Finde die Größe der Innenwinkel heraus und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Aufgabe 3
Aufgabe 4 (Sicherung)