Benutzer:HAG-S7: Unterschied zwischen den Versionen
HAG-S7 (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
HAG-S7 (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 70: | Zeile 70: | ||
Dass x = x ist, gilt immer – egal welche Zahlen du für x und y einsetzt. Das heißt, das lineare Gleichungssystem hat '''unendlich viele''' Lösungen. Die Lösungsmenge schreibst du dann als alle Zahlen | Dass x = x ist, gilt immer – egal welche Zahlen du für x und y einsetzt. Das heißt, das lineare Gleichungssystem hat '''unendlich viele''' Lösungen. Die Lösungsmenge schreibst du dann als alle Zahlen x und y, für die y = 2x -7 gilt. | ||
<br /> | <br /> | ||
L = {(x|y) |y = 2x - 7} | L = {(x|y) |y = 2x - 7} |
Version vom 8. November 2023, 08:07 Uhr
Ben - Lineare Gleichungssysteme | ||
ich arbeite hier | ||
Es werden erste Versuche unternommen. |
Bei linearen Gleichungssystemen (kurz: LGS) hast du mehrere Gleichungen gegeben, in denen zwei oder mehr unbekannte Variablen vorkommen. Ein lineares Gleichungssystem mit 2 Unbekannten könnte zum Beispiel so aussehen:
(I) 6x + 2y = 18
(II) y = 3x - 3
Es besteht aus zwei Gleichungen, die jeweils zwei Variablen enthalten – in unserem Fall sind das und . Beim LGS lösen ist dein Ziel, Werte für die Variablen zu finden, sodass beide Gleichungen gleichzeitig erfüllt sind:
x = 2
y = 3
Es könnte auch passieren, dass einem zwei Spezialfälle beim Lösen von linearen Gleichungssystemen begegnen. Ein lineares Gleichungssystem kann nämlich gar keine oder unendlich viele Lösungen haben.
keine Lösung:
(I) y = 3x -1
(II) 9x +14 = 3y
Du siehst, dass (I) schon ganz nach y aufgelöst ist, also verwendest du das Einsetzungsverfahren und setzt y aus (I) in (II) ein.
9x + 14 = 3 * (3x - 1)
9x + 14 = 9x - 3 |-9x
14 ≠ -3
Hier würde am Ende 14 = -3 stehen. Aber das ist natürlich nie richtig! Das heißt, es gibt keine Lösung für dieses lineare Gleichungssystem. Du schreibst die Lösungsmenge trotzdem hin, aber sie bleibt leer.
L = {}
unendlich viele Lösungen:
(I) y = 2x - 7
(II) 3y +21 = 6x
Du setzt y in (II) ein, um das LGS zu lösen.
3 * (2x -7)+ 21 = 6x
6x - 21 + 21 = 6x
6x = 6x
x=x
Dass x = x ist, gilt immer – egal welche Zahlen du für x und y einsetzt. Das heißt, das lineare Gleichungssystem hat unendlich viele Lösungen. Die Lösungsmenge schreibst du dann als alle Zahlen x und y, für die y = 2x -7 gilt.
L = {(x|y) |y = 2x - 7}
1. Gleichsetzungsverfahren:
Schritt 1: Forme beide Gleichungen nach derselben Variable um (z. B. x).
Schritt 2: Setze die Terme gleich.
Schritt 3: Löse die Gleichung nach der übrigen Variable (z. B. y) auf.
Schritt 4: Setze nun das Ergebnis aus Schritt 3 in eine der Gleichungen aus Schritt 1 ein. So berechnest du den Wert der anderen Variable (x).
Probe: Nun setzt du die ermittelten Werte in die ursprünglichen Gleichungen des linearen Gleichungssystems ein. Wenn die Gleichungen erfüllt sind, ist dein Ergebnis richtig.
2. Einsetzungsverfahren:
Schritt 1: Wähle eine Gleichung aus, die du nach einer Variablen umformst.
Schritt 2: Setze den Wert der Variable in die andere Gleichung ein.
Schritt 3: Berechne die noch enthaltende Variable.
Schritt 4: Setze die in Schritt 3 berechnete Variable in die Gleichung aus Schritt 1 ein und berechne so die übrig gebliebene Variable.
Probe: Setze die ermittelten Werte in die Gleichungen ein und überprüfe, ob die Gleichungen erfüllt sind.
3. Additionsverfahren:
Schritt 1: Überlege dir, welche Variable du entfernen möchtest.
Schritt 2: Multipliziere die Gleichungen mit Zahlen, sodass sich eine Variable gegenseitig aufhebt.
Schritt 3: Addiere beide Gleichungen zusammen. Du erhältst damit eine neue Gleichung, die die gewählte Variable nicht mehr enthält.
Schritt 4: Berechne die andere Variablen.
Probe: Setze die ermittelten Werte in die Gleichungen ein und überprüfe, ob die Gleichungen erfüllt sind.
1. Gleichsetzungsverfahren Aufg.:
Übung 1: Bearbeite die folgende Übung:
Hier sind nochmal ein paar Vidos zur Vertiefung:
Zum lernen für das Gleichsetzungsverfahren:
Zum lernen für das Einsetzungsverfahren:
Zum lernen für das Additionsverfahren: