Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 263: | Zeile 263: | ||
====Quadratische Funktionen: Punktprobe==== | ====Quadratische Funktionen: Funktionsgleichung aufstellen==== | ||
{{Box|Funktionsgleichung einer quadratischen Funktion bestimmen|Um die Funktionsgleichung einer quadratischen Funktion aufzustellen, musst du wissen, wie groß a, d und e sind. Du brauchst also | |||
* den Scheitelpunkt S(-d|e) und | |||
* einen weiteren Punkt auf der Parabel, um den Streckungsfaktor a zu bestimmen. | |||
Mit den Werten kannst die dann die Funktionsgleichung in der Scheitelpunktform angeben.|Mersatz}} | |||
Beispiel:<br> | |||
Eine Parabel hat den Scheitelpunkt S(0|-3) und geht durch den Punkt P(2|-2).<br> | |||
f(x) = a(x + d)² + e |Setze für d=0 und e=-3 ein<br> | |||
f(x) = a(x - 0) + (-3)<br> | |||
f(x) = ax² - 3 |Setze die Koordinaten des Punkte P ein (Punktprobe)<br> | |||
-2 = a·2² - 3 <br> | |||
-2 = 4a - 3 |+3<br> | |||
1 = 4a |:4<br> | |||
<math>\tfrac{1}{4}</math> = a<br> | |||
Also lautet die Funktionsgleichung der Parabel f(x) = <math>\tfrac{1}{4}</math>x² - 3. | |||
{{Box|Übung|Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch. | {{Box|Übung|Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch. | ||
* S. 123, P12 - P16 | * S. 123, P12 - P16 | ||
* AB Quadratische Funktionen - Anwendungsaufgaben|Üben}} | * AB Quadratische Funktionen - Anwendungsaufgaben|Üben}} |
Version vom 29. Dezember 2022, 18:18 Uhr
Funktionen
Lineare Funktionen
Diese Eigenschaften werden in folgendem Lied besungen.
Hier heißt die Funktionsgleichung f(x) = mx + n (n statt b, du findest in verschiedenen Büchern verschiedene Bezeichnungen).
Lineare Funktionen: Wertetabelle
Lineare Funktionen: Gleichung und Graph
Beispiele:
Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.
Du kannst auch mithilfe von zwei Punkte die Gerade zeichnen bzw. die Funktionsgleichung bestimmen. Wie dur vorgehst, zeigt das Video.
Lineare Funktionen: Nullstellen bestimmen
Lineare Funktionen: Punktprobe
Quadratische Funktionen
Die Scheitelpunktform quadratischer Funktionen
Quadratische Funktionen: Scheitelpunktform und Normalform
Du kannst die Formen der Quadratischen Funktionen umwandeln:
Beispiel:
f(x) = (x + 3)² - 4 |1. binomische Formel
= x² + 2·x·3 + 3² - 4
= x² + 6x + 9 - 4
= x² + 6x + 5
Die Normalform eignet sich gut zur Nullstellenberechnung, denn hier kannst du die p-q-Formel anwenden.
Beispiel:
f(x) = x² + 8x - 4 |quadratische Ergänzung = 4² = 16
= x² + 8x + 16 - 16 - 4 |1. binomische Formel
= (x + 4)² - 16 - 4
= (x + 4)² - 20
Also lautet der Scheitelpunkt S(-4|-20)
Quadratische Funktionen: Nullstellen bestimmen
Ist die Parabelgleichung in der Scheitelpunktform gegeben, kannst du die Anzahl der Nullstellen erkennen.
Je nach Lage des Scheitelpunktes und der Öffnung der Parabel hat diese keine, eine oder zwei Nullstellen:
Tipp: Bestimme zunächst die Lage des Scheitelpunktes und die Öffnungsrichtung der Parabel. Ordne dann passend zu:
keine | f(x) = x² + 3 | f(x) = -2x² - 5 | f(x) = (x+2)² + 1 |
eine | f(x) = x² | f(x) = (x - 4)² | f(x) = -(x+2)² |
zwei | f(x) = x² - 3 | f(x) = -2x² + 5 | f(x) = (x+2)² - 1 |
1. Form: f(x) = ax²
Beispiel: f(x) = 3x²
f(x) = 0
3x² = 0 |:3
x² = 0 |
x = 0
N(0|0)
Natürlich hat jede Parabel mit der Funktionsgleichung f(x) = ax² die Nullstelle N(0|0), denn ihr Scheitelpunkt liegt im Ursprung. Der Scheitelpunkt ist also die Nullstelle.
2. Form: f(x) = ax² + c
Beispiel: f(x) = 0,5x² - 8
f(x) = 0
0,5x² - 8 = 0 |+8
0,5x² = 8 |:0,5
x² = 16 |
x1 = - und x2 = +
x1 = -4 und x2 = +4
N1(-4|0) und N2(4|0)
3. Form: Scheitelpunktform f(x) = a(x+d)²+e
Beispiel: f(x) = 2(x + 2)² - 18
f(x) = 0
2(x + 2)² - 18 = 0 |+18
2(x + 2)² = 18 |:2
(x + 2)² = 9 |
x1 + 2 = - und x2 + 2 = +
x1 + 2 = -3 und x2 + 2 = 3 |-2
x1 = - 3 - 2 und x2 = + 3 - 2
x1 = -5 und x2 = 1
N1(-5|0) und N2(1|0)
Der Scheitelpunkt der Parabel liegt immer in der Mitte zwischen den beiden Nullstellen. Die x-Koordinate des Scheitelpunktes muss also -2 heißen. (x-Koordinate zwischen x = -5 und x = 1).
Dies passt zum Scheitelpunkt S(-2|-18), der aus der Parabelgleichung abgelesen werden kann.
4. Form: Normalform f(x) = x² + px + q
Lösung mit der p-q-Formel:
Normalform: f(x) = x² + px + q
x² + px + q = 0
x1/2 = -
Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0 | pq-Formel mit p=-6 und q=5
x1/2 = -
x1/2 = 3
x1/2 = 3
x1/2 = 32
x1 = 3 - 2 = 1 ; x2 = 3+2 = 5
N1(1|0) und N2(5|0)
4. Form: Normalform f(x) = x² + px + q (mit quadratischer Ergänzung )
Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0 | quadratische Ergänzung
x² - 6x + 3² - 3² + 5 = 0 | 2. binomische Formel
(x - 3)² - 9 + 5 = 0
(x - 3)² - 4 = 0 | nun hast du wieder die Scheitelpunktform und geht wie in Bsp 3 vor: +4
(x - 3)² = 4 |
x1 - 3 = -2 und x2 - 3 = 2 |+3
x1 = -2 + 3 und x2 = 2 + 3
x1 = 1 und x2 = 5
Quadratische Funktionen: Funktionsgleichung aufstellen
Beispiel:
Eine Parabel hat den Scheitelpunkt S(0|-3) und geht durch den Punkt P(2|-2).
f(x) = a(x + d)² + e |Setze für d=0 und e=-3 ein
f(x) = a(x - 0) + (-3)
f(x) = ax² - 3 |Setze die Koordinaten des Punkte P ein (Punktprobe)
-2 = a·2² - 3
-2 = 4a - 3 |+3
1 = 4a |:4
= a
Also lautet die Funktionsgleichung der Parabel f(x) = x² - 3.