Informatik am Gymnasium Trittau/Digitale Informationsverarbeitung/Binärsystem: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Zeichen hinzugefügt)
KKeine Bearbeitungszusammenfassung
 
Zeile 7: Zeile 7:


Hinter jedem Binärcode steckt eine Zahl, welche wiederum, je nach System (z.B. [https://www.cfd.tu-berlin.de/Lehre/EDV1/skripte/alles/node77.html Ascii]), für ein Zeichen, Buchstaben, Befehle, etc. stehen kann.
Hinter jedem Binärcode steckt eine Zahl, welche wiederum, je nach System (z.B. [https://www.cfd.tu-berlin.de/Lehre/EDV1/skripte/alles/node77.html Ascii]), für ein Zeichen, Buchstaben, Befehle, etc. stehen kann.
=== Umrechnung ===
{| class="wikitable"
{| class="wikitable"
|+
|+
Zeile 31: Zeile 33:
Hinter einem Bit steckt 2<sup><small>n</small></sup>, so ist das  erste Bit 2<sup><small>0</small></sup>, das zweite 2<sup><small>1</small></sup>, usw.
Hinter einem Bit steckt 2<sup><small>n</small></sup>, so ist das  erste Bit 2<sup><small>0</small></sup>, das zweite 2<sup><small>1</small></sup>, usw.


Hinter der Zahl Fünf Beispielsweise, steckt die Rechnung:
Hinter der Zahl Fünf Beispielsweise, steckt die Umrechnung:


1*2<sup><small>2</small></sup> + 0*2<sup><small>1</small></sup> + 1*2<sup><small>0</small></sup>
1*2<sup><small>2</small></sup> + 0*2<sup><small>1</small></sup> + 1*2<sup><small>0</small></sup>
Zeile 37: Zeile 39:
4      +      0    +    1 =5
4      +      0    +    1 =5
<br />
<br />
===Rechnen im Binärsystem===
====Rechnen im Binärsystem====
Addieren:
Addieren:
{| class="wikitable"
{| class="wikitable"

Aktuelle Version vom 14. Dezember 2022, 08:13 Uhr

Allgemeine Informationen

Das Binärsystem ist ein Zahlensystem bestehend aus der Basis 0 und 1, auch Dualsystem genannt.

Es dient zur Darstellung und Verarbeitung von Informationen.

Ein Binärcode ist eine Reihenfolge, bestehend aus 0 und 1auch Bits genannt. 8 Bits = 1 Byte.

Hinter jedem Binärcode steckt eine Zahl, welche wiederum, je nach System (z.B. Ascii), für ein Zeichen, Buchstaben, Befehle, etc. stehen kann.

Umrechnung

23 22 21 20
8 4 2 1
Bsp: 10
1 0 1 0

Hinter einem Bit steckt 2n, so ist das erste Bit 20, das zweite 21, usw.

Hinter der Zahl Fünf Beispielsweise, steckt die Umrechnung:

1*22 + 0*21 + 1*20

4 + 0 + 1 =5

Rechnen im Binärsystem

Addieren:

Zahl 1 1 1 0 1 = 13
Zahl 2 + 1 0 1 1 = 11
Übertrag 1 1 1
Ergebnis 1 1 0 0 0 = 24

Beim schriftlichen Addieren im Binärsystem, fängt man mit den letzten Bits der Zahlen an. 0+0=0, 0+1=1,1+1=0 mit Übertrag 1.


Subtrahieren:

Zahl 1 1 1 1 0 = 14
Zahl 2 - 1 0 1 = 5
Übertrag 1
Ergebnis 1 0 0 1 = 9

Multiplikation:

10100 * 10101 = 20*21
1 0 1 0 0
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 0
Übertrag 1 1 1
Ergebnis 1 1 0 1 0 1 0 0 0 = 420