Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden vermessen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 36: | Zeile 36: | ||
{{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}} | {{Box|1=Info|2=In den Aufgaben 3 und 4 hast du noch einmal die Möglichkeit, das Bestimmen von recht- und dreieckigen Flächeninhalten zu üben. Solltest du dich schon sicher fühlen, kannst du auch direkt mit Aufgabe 5 weitermachen.|3=Kurzinfo}} | ||
{{Box | Aufgabe 3: Rechteckige Flächeninhalte | {{Box | Aufgabe 3: Rechteckige Flächeninhalte| | ||
Berechne den Flächeninhalt folgender Rechtecke. | |||
'''a)''' <math>a=7\text{ m}, b=5\text{ m}</math> | '''a)''' <math>a=7\text{ m}, b=5\text{ m}</math> | ||
Zeile 47: | Zeile 49: | ||
{{Box | Aufgabe 4: Dreieckige Flächeninhalte | {{Box | Aufgabe 4: Dreieckige Flächeninhalte| | ||
Berechne den Flächeninhalt folgender Dreiecke. | |||
'''a)''' <math>g=16\text{ m}, h=7\text{ m}</math> | '''a)''' <math>g=16\text{ m}, h=7\text{ m}</math> | ||
Zeile 59: | Zeile 63: | ||
| Arbeitsmethode|Farbe={{Farbe|orange}}}} | | Arbeitsmethode|Farbe={{Farbe|orange}}}} | ||
{{Box|Aufgabe 5: Formeln notieren|[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein | {{Box|Aufgabe 5: Formeln notieren|[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''Kehre nun zum Arbeitsblatt zurück und trage die Formeln zur Berechnung rechteckiger und dreieckiger Flächeninhalte ein.'''{{Lösung versteckt|Die Formel zur Berechnung eines dreieckigen Flächeninhaltes lautet: <math>A=\tfrac{g \cdot h}{2}</math>|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode |Farbe={{Farbe|orange}} }} | | Arbeitsmethode |Farbe={{Farbe|orange}} }} | ||
Version vom 28. November 2022, 12:49 Uhr
Wiederholung
Rechteckigen Flächeninhalt berechnen
Dreieckigen Flächeninhalt berechnen
Oberflächeninhalte berechnen
Wie du bereits im vorherigen Kapitel entdeckt hast, lässt sich die Oberfläche einer Pyramide in ein Netz überführen, indem man die Pyramide aufklappt und die Seitenflächen auf eine Ebene faltet.
Das so entstandene Netz besteht somit aus einer Grundfläche und den dreieckigen Seitenflächen, welche zusammen die sogenannte Mantelfläche bilden.
Den Flächeninhalt des gesamten Netzes nennt man den Oberflächeninhalt . Du kannst dir diese Größe als Menge an Verpackung vorstellen, die du benötigst, um das pyramidenförmige Objekt zu umschließen.
Im Falle einer quadratischen Pyramide, welche ihre Spitze über der Mitte ihrer Grundfläche hat, ergibt sich für die Grundfläche die Fläche eines Quadrates und für ihre Mantelfläche die Flächeninhalte von vier gleich großen Dreiecken.
a)
Grundfläche :
Seitenfläche :
Oberflächeninhalt :
b)
Seitenfläche :
Seitenfläche :
Mantelfläche :
c)
Grundfläche :
Seitenfläche :
Seitenfläche :
Mantelfläche :
Oberflächeninhalt :
d)
Seitenfläche :
Mantelfläche :
Pyramiden schätzen
Vertiefen und Vernetzen