Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden konstruieren: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Zeile 16: Zeile 16:
#das '''Schrägbild einer Pyramide''' erstellst.
#das '''Schrägbild einer Pyramide''' erstellst.


Am Ende folgt eine Sicherung der in diesem Kapitel behandelten Themen. Wir wünschen dir viel Erfolg beim Bearbeiten den Aufgaben!<br />
Am Ende folgt eine Sicherung der in diesem Kapitel behandelten Themen. Wir wünschen dir viel Erfolg beim Bearbeiten den Aufgaben!
 
<br />


==='''Einführung'''===
==='''Einführung'''===


{{Box|1=Definition: Netz eines Körpers|2=Das Netz eines Körpers stellt diesen "auseinandergefaltet", also mit ausgebreiteten Flächen dar. Diese Darstellung erleichtert z.B. die Herstellung eines solchen Körpers aus Papier.|3=Merksatz}}► ''Ordne den unten dargestellten Netzen die Körper zu, die daraus hergestellt werden können; mögliche Körper sind dabei: Würfel, Pyramide mit dreieckiger Grundfläche, Quader, Dreiecksprisma, Pyramide mit quadratischer Grundfläche. '''Halte deine Ergebnisse schriftlich fest.'''''[[Datei:Netze farbig.png|zentriert|gerahmt]]
{{Box|1=Definition: Netz eines Körpers|2=Das Netz eines Körpers stellt diesen "auseinandergefaltet", also mit ausgebreiteten Flächen dar. Diese Darstellung erleichtert z.B. die Herstellung eines solchen Körpers aus Papier.|3=Merksatz}}► ''Ordne den unten dargestellten Netzen die Körper zu, die daraus hergestellt werden können; mögliche Körper sind dabei: Würfel, Tetraeder (Pyramide mit dreieckiger Grundfläche), Quader, Dreiecksprisma, Pyramide mit quadratischer Grundfläche. '''Halte deine Ergebnisse schriftlich fest.'''''[[Datei:Netze farbig.png|zentriert|gerahmt]]


{{Lösung versteckt|1=""|2=Kontrolle anzeigen|3=Ausblenden}}
{{Lösung versteckt|1=Gelbes Netz: Dreiecksprisma, hellblaues Netz: Tetraeder, braunes Netz: Würfel, grünes Netz: Quader, lila Netz: Pyramide quadratischer Grundfläche|2=Kontrolle anzeigen|3=Ausblenden}}<br />
==='''1. Netze entwerfen'''===
==='''1. Netze entwerfen'''===


===='''1.1. Netz einer Pyramide mit quadratischer Grundfläche zeichnen'''====
===='''1.1. Netz einer Pyramide mit quadratischer Grundfläche zeichnen'''====
► ''Folge den Schritten (a) bis (e), um das Netz einer Pyramide mit quadratischer Grundfläche zu zeichnen. Hinweis: Deine Zeichnung soll nach dieser Anleitung im Wesentlichen so aussehen wie das lila dargestellte Netz aus der obigen Abbildung.''
► ''Folge den Schritten (a) bis (e), um das Netz einer Pyramide mit quadratischer Grundfläche zu zeichnen. Deine Zeichnung soll nach dieser Anleitung im Wesentlichen so aussehen wie das lila dargestellte Netz aus der obigen Abbildung.''


a) Zeichne zuerst ein Quadrat.
a) Zeichne zuerst ein Quadrat.


b) Zeichne nun in das Quadrat die beiden Diagonalen ein. Deren Schnittpunkt kennzeichnest du mit einem "S".
b) Zeichne nun in das Quadrat die beiden Diagonalen ein; deren Schnittpunkt kennzeichnest du mit einem S.


c) Tu folgendes für alle vier Seiten des Quadrats: Lege das Geo-Dreieck so, dass eine Gerade entsteht, die durch S und senkrecht durch die jeweilige Seite verläuft. Somit erhältst du die vier Punkte, die mittig auf den Seiten liegen. Zeichne diese Punkte ein und nenne sie A, B, C bzw. D.  
c) Tu folgendes für alle vier Seiten des Quadrats: Lege das Geo-Dreieck so, dass eine Gerade entsteht, die durch S und senkrecht durch die jeweilige Seite verläuft. Somit erhältst du die vier Punkte, die mittig auf den Seiten liegen. Zeichne diese Punkte ein und nenne sie A, B, C bzw. D.  
Zeile 36: Zeile 38:
d) Zeichne jetzt, von den vier mittig auf den Seiten liegenden Punkten A bis D ausgehend, jeweils eine 4cm-lange Strecke ein; diese beginnt jeweils in den Punkten A (bzw. B, C, D), steht senkrecht auf der jeweiligen Seite des Quadrats und führt vom Quadrat weg.
d) Zeichne jetzt, von den vier mittig auf den Seiten liegenden Punkten A bis D ausgehend, jeweils eine 4cm-lange Strecke ein; diese beginnt jeweils in den Punkten A (bzw. B, C, D), steht senkrecht auf der jeweiligen Seite des Quadrats und führt vom Quadrat weg.


e) Verbinde nun die "Enden" der soeben erstellten Strecken mit den nächstliegenden Ecken des Quadrats, sodass vier Dreiecke entstehen, die das Quadrat umschließen.
e) Verbinde nun die "Enden" der soeben erstellten Strecken mit den nächstliegenden Ecken des Quadrats, sodass vier Dreiecke entstehen, die das Quadrat umschließen.<br />
 
<br />


===='''1.2. Tetraeder erkunden'''====
===='''1.2. Tetraeder erkunden'''====
Nicht alle Pyramiden haben eine quadratische Grundfläche; ein Rechteck, Dreieck oder Sechseck als Grundfläche ist ebenfalls möglich. Ein besonderer Fall ist die Pyramide, die aus vier gleichseitigen Dreiecken besteht (womit die Grundfläche auch dreieckig ist); dieser Körper heißt ''Tetraeder''.
Nicht alle Pyramiden haben eine quadratische Grundfläche; ein Rechteck, Dreieck, Sechseck usw. als Grundfläche ist ebenfalls möglich. Ein besonderer Fall ist die Pyramide, die aus vier gleichseitigen Dreiecken besteht (womit die Grundfläche auch dreieckig ist); dieser Körper heißt ''Tetraeder''.


{{Box|1=Definition: Tetraeder|2=Ein (regelmäßiger) Tetraeder ist eine Pyramide, die aus vier gleichseitigen Dreiecken besteht. Somit ist auch die Grundfläche ein Dreieck.
{{Box|1=Definition: Tetraeder|2=Ein (regelmäßiger) Tetraeder ist eine Pyramide, die aus vier gleichseitigen Dreiecken besteht. Somit ist auch die Grundfläche ein Dreieck.
[[Datei:Triangular Pyramid (Tetrahedron).svg|mittig|zentriert|Schrägbild eines Tetraeders]]|3=Merksatz}}► ''Zeichne nun das Netz eines Tetraeders. Wenn du Hilfe benötigst, kannst du dir eine Anleitung anzeigen lassen:'' {{Lösung versteckt|1=1. Beginne mit der Grundfläche. Achte dabei darauf, dass diese ein gleichseitiges Dreieck ist und somit auch gleichwinklig ist.
[[Datei:Triangular Pyramid (Tetrahedron).svg|mittig|zentriert|Schrägbild eines Tetraeders]]|3=Merksatz}}► ''Zeichne das Netz eines Tetraeders. Wenn du Hilfe benötigst, kannst du dir eine Anleitung anzeigen lassen:'' {{Lösung versteckt|1=1. Beginne mit der Grundfläche. Achte dabei darauf, dass diese ein gleichseitiges Dreieck ist und somit auch gleichwinklig ist.


2. Zeichne drei Hilfslinien ein. Von der Spitze des Dreiecks bis zur Mitte der gegenüberliegenden Seite. Die Hilfslinien stehen dabei im 90° Winkel zur jeweiligen Seite. Bezeichne die Schnittpunkte mit A, B, und C.
2. Zeichne drei Hilfslinien ein. Von der Spitze des Dreiecks bis zur Mitte der gegenüberliegenden Seite. Die Hilfslinien stehen dabei im 90° Winkel zur jeweiligen Seite. Bezeichne die Schnittpunkte mit A, B, und C.

Version vom 29. Oktober 2022, 18:08 Uhr

Bauarbeiter.jpg

Dieser Lernpfad befindet sich aktuell im Aufbau.


Pyramiden konstruieren

Pyramide in Potsdam.

Pyramiden begegnen uns nicht nur im Mathematikunterricht, sondern auch in der realen Welt, wie z.B. in Architektur (Bild rechts) und Bauingenieurwesen (Konstruktion und Betrieb von Bauwerken des Hoch-, Verkehrs-, Tief- und Wasserbaus).

► Notiere zwei pyramidenartige Gegenstände oder Gebäude, die dir aus dem Alltag bekannt sind.

In diesem Kapitel, "Pyramiden konstruieren", lernst du, wie du...

  1. das Netz einer Pyramide zeichnest
  2. aus diesem Netz eine Pyramide faltest
  3. das Schrägbild einer Pyramide erstellst.

Am Ende folgt eine Sicherung der in diesem Kapitel behandelten Themen. Wir wünschen dir viel Erfolg beim Bearbeiten den Aufgaben!


Einführung

Definition: Netz eines Körpers
Das Netz eines Körpers stellt diesen "auseinandergefaltet", also mit ausgebreiteten Flächen dar. Diese Darstellung erleichtert z.B. die Herstellung eines solchen Körpers aus Papier.

Ordne den unten dargestellten Netzen die Körper zu, die daraus hergestellt werden können; mögliche Körper sind dabei: Würfel, Tetraeder (Pyramide mit dreieckiger Grundfläche), Quader, Dreiecksprisma, Pyramide mit quadratischer Grundfläche. Halte deine Ergebnisse schriftlich fest.

Netze farbig.png
Gelbes Netz: Dreiecksprisma, hellblaues Netz: Tetraeder, braunes Netz: Würfel, grünes Netz: Quader, lila Netz: Pyramide quadratischer Grundfläche


1. Netze entwerfen

1.1. Netz einer Pyramide mit quadratischer Grundfläche zeichnen

Folge den Schritten (a) bis (e), um das Netz einer Pyramide mit quadratischer Grundfläche zu zeichnen. Deine Zeichnung soll nach dieser Anleitung im Wesentlichen so aussehen wie das lila dargestellte Netz aus der obigen Abbildung.

a) Zeichne zuerst ein Quadrat.

b) Zeichne nun in das Quadrat die beiden Diagonalen ein; deren Schnittpunkt kennzeichnest du mit einem S.

c) Tu folgendes für alle vier Seiten des Quadrats: Lege das Geo-Dreieck so, dass eine Gerade entsteht, die durch S und senkrecht durch die jeweilige Seite verläuft. Somit erhältst du die vier Punkte, die mittig auf den Seiten liegen. Zeichne diese Punkte ein und nenne sie A, B, C bzw. D.

d) Zeichne jetzt, von den vier mittig auf den Seiten liegenden Punkten A bis D ausgehend, jeweils eine 4cm-lange Strecke ein; diese beginnt jeweils in den Punkten A (bzw. B, C, D), steht senkrecht auf der jeweiligen Seite des Quadrats und führt vom Quadrat weg.

e) Verbinde nun die "Enden" der soeben erstellten Strecken mit den nächstliegenden Ecken des Quadrats, sodass vier Dreiecke entstehen, die das Quadrat umschließen.

1.2. Tetraeder erkunden

Nicht alle Pyramiden haben eine quadratische Grundfläche; ein Rechteck, Dreieck, Sechseck usw. als Grundfläche ist ebenfalls möglich. Ein besonderer Fall ist die Pyramide, die aus vier gleichseitigen Dreiecken besteht (womit die Grundfläche auch dreieckig ist); dieser Körper heißt Tetraeder.


Definition: Tetraeder

Ein (regelmäßiger) Tetraeder ist eine Pyramide, die aus vier gleichseitigen Dreiecken besteht. Somit ist auch die Grundfläche ein Dreieck.

Schrägbild eines Tetraeders

Zeichne das Netz eines Tetraeders. Wenn du Hilfe benötigst, kannst du dir eine Anleitung anzeigen lassen:

1. Beginne mit der Grundfläche. Achte dabei darauf, dass diese ein gleichseitiges Dreieck ist und somit auch gleichwinklig ist.

2. Zeichne drei Hilfslinien ein. Von der Spitze des Dreiecks bis zur Mitte der gegenüberliegenden Seite. Die Hilfslinien stehen dabei im 90° Winkel zur jeweiligen Seite. Bezeichne die Schnittpunkte mit A, B, und C.

3. Miss nun die Länge der Hilfslinien.

4. Zeichne nun von den Punkten A, B, C die Seitenhöhen ein. Diese sind genauso lang wie die Hilfslinien.

5. Verbinde nun die "Enden" der erstellten Strecken mit den nächstliegenden Ecken des Dreiecks, sodass drei Dreiecke entstehen, die die Grundfläche umschließen.

Kontrolliere deine Zeichnung anschließend mit der Musterlösung.

So sollte dein Netz aussehen.

Netz eines Tetraeders


2. Körper herstellen

2.1. Vom Netz zum Körper

Eben hast du mindestens ein Körpernetz gezeichnet. Nun soll daraus ein dreidimensionaler Körper hergestellt werden. Nachfolgend ist die Herstellung einer Pyramide dargestellt.

Bewege den Schieberegler, um deren Seitenflächen aufzurichten. Durch Verschieben der Eckpunkte kannst du die Gestalt der Pyramide verändern.

Eben hast du das Netz einer Pyramide mit quadratischer Grundfläche und vielleicht auch das eines Tetraeders gezeichnet. Nun soll aus diesem Netz ein dreidimensionaler Körper durch Auffalten des Netzes hergestellt werden.

Nachfolgend ist die Herstellung einer Pyramide dargestellt. Ziehe den Schieberegler nach rechts, um die Mantelflächen der Pyramide aufzurichten. Um die Form der Pyramide zu verändern, kannst du deren Eckpunkte verschieben; dadurch wird auch das Netz verändert.

GeoGebra

2.2. Pyramide mit quadratischer Grundfläche herstellen

► Stelle aus dem in 1.1. angefertigten Netz eine Pyramide mit quadratischer Grundfläche her.

a) Nimm das Netz, was du in Aufgabe 1.1 erstellt hast und lege es vor dich hin. Falls du diese Aufgabe übersprungen hast, gehe zurück und zeichne ein Netz.

b) Schneide das Netz aus.

c) Falte die Seitenflächen entlang der Kanten des Quadrats, jeweils an den Punkten A,B,C und D.

d) Jetzt kannst du die Seitenflächen an der oberen Spitze zusammenfügen. Das ist dann die Spitze deiner Pyramide.

e) Du kannst deine Pyramide an den Seiten mit etwas Tesafilm fixieren, wenn du möchtest.


3. Schrägbilder zeichnen

Definition: Schrägbild

Schrägbilder stellen dreidimensionale Körper zweidimensional dar.

Schrägbild Würfel.png

3.1. Schrägbild einer Pyramide mit quadratischer Grundfläche zeichnen

► Zeichne das Schrägbild einer Pyramide mit quadratischer Grundfläche mit Grundflächenkantenlänge a = 5cm und Körperhöhe H = 6cm, indem du nach folgender Anleitung vorgehst:

a) Zeichne zuerst die Grundfläche. Stell dir vor, die Grundfläche würde "nach hinten weggehen". Diese perspektivische Darstellung gelingt dir, indem du 1. die "nach hinten weggehenden" Kanten nur halb so lang wie eigentlich und 2. unter einem Winkel von 45° (Verzerrungswinkel) zeichnest (siehe Abbildung oben).

b) Vervollständige das Schrägbild.

Die in die Tiefe, also nach hinten gehenden Seiten werden unter einem 45°-Winkel gezeichnet; nicht sichtbare Kanten werden gestrichelt dargestellt; die Fläche, auf der der Quader steht, heißt Grundfläche; die vier Seitenflächen ergeben zusammen die Mantelfläche. Zeichne auf der Fläche, der der Grundfläche gegenüberliegt (sozusagen die "Dachfläche") die beiden Diagonalen ein. Bezeichne deren Schnittpunkt mit S. Verbinde S mit den unteren vier Ecken des Quaders.
GeoGebra

3.2. Schrägbild einer Pyramide mit n-eckiger Grundfläche

Überlege dir, welche Grundfläche deine Pyramide haben soll (Bsp.: dreieckige, quadratische, sechseckige Grundfläche). Zeichne nun das passende Schrägbild.


4 Sicherung

4.1 Lückentext

Die Grundfläche einer Pyramide kann (1) ____________ besitzen . Eine Pyramide aus vier (2) ____________ Dreiecken heißt (3) ____________. Das Netz eines Körpers zeigt dessen Flächen perspektivisch (4) ______________. Aus diesem Netz lässt sich der (5) ____________ herstellen. Das (6) ____________ eines Körpers stellt diesen (7) ____________ dar. Dabei ist zu beachten, dass die in die Tiefe ("nach hinten") gehenden Kanten nur (8) ____________ wie in Wirklichkeit dargestellt werden. Im Schrägbild einer Pyramide mit quadratischer Grundfläche gehen die seitlichen Kanten der Grundfläche in einem Winkel von (9) ____________ in die Tiefe; dieser Winkel wird (10) ____________ genannt.

1) beliebig viele Ecken; 2) gleichseitigen; 3) Tetraeder; 4) unverzerrt; 5) Körper; 6) Schrägbild; 7) zweidimensional; 8) halb so lang; 9) 45°; 10) Verzerrungswinkel

4.2 Praktische Sicherung

a) Eine Scheune ist 40m lang, 30m breit und hat eine Höhe von 10m. Das Dach dieser Scheune hat die Form einer Pyramide. Zeichne das Netz des Daches im Maßstab 1:100.

Im Maßstab 1:100 entspricht 1m in der Realität 1cm in deiner Skizze.

b) Zeichne nun das Schrägbild dieser Pyramide ebenfalls maßstabsgetreu.

c)* Wähle eine n-eckige Grundfläche aus und zeichne das Netz dieser Pyramide. Zeichne nun auch das Schrägbild deiner Pyramide.