Benutzer:Buss-Haskert/Bruchgleichungen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 19: Zeile 19:


===Bruchgleichungen lösen===
===Bruchgleichungen lösen===
 
<div class="grid">
{{#ev:youtube|TN9tlB8e1m4|800|center}}
<div class="width-1-2">{{#ev:youtube|TN9tlB8e1m4|420|center}}</div>
<div class="width-1-2">{{#ev:youtube|sC97E9vS67U|420|center}}</div>
</div>


{{Box|1=Bruchgleichungen lösen|2=Um eine Bruchgleichung zu lösen, multipliziere die Gleichung mein einem gemeinsamen Nenner, so hast du eine Gleichung ohne Bruchterme.<br>
{{Box|1=Bruchgleichungen lösen|2=Um eine Bruchgleichung zu lösen, multipliziere die Gleichung mein einem gemeinsamen Nenner, so hast du eine Gleichung ohne Bruchterme.<br>

Version vom 23. Mai 2022, 18:54 Uhr

Bruchgleichungen

Was ist eine Bruchgleichung?

Terme, in denen die Variable im Nenner vorkommt, heißen Bruchterme. Demnach heißen Gleichungen mit Bruchtermen Bruchgleichungen.
Beispiel:

Definitionsmenge

Da du nicht durch 0 teilen darfst, darf der Nenner nicht den Wert 0 annehmen. Die Zahlen dürfen also nicht für x eingesetzt werden.

Definitionsmenge

Die Menge aller Zahlen, die für x eingesetzt werden dürfen, heißt Definitionsmenge.
Beispiel:

Hier würde der Nenner den Wert null annehmen, wenn x = 1 eingesetzt würde. Daher ist die Definitionsmenge die Menge aller reellen Zahlen ohne die Zahl 1.

D = ℝ\{2}.


Übung: Definitionsmenge bestimmen
Löse die nachfolgenden LearningApps.



Bruchgleichungen lösen


Bruchgleichungen lösen

Um eine Bruchgleichung zu lösen, multipliziere die Gleichung mein einem gemeinsamen Nenner, so hast du eine Gleichung ohne Bruchterme.
Beispiel:
   D = ℝ\{2}.
Der (gemeinsame) Nenner lautet (x-1).
  |·(x-1)
9x = 3x(x-1)

Nun hast du eine Gleichung ohne Bruchterme! Löse diese wie gewohnt.