Herta-Lebenstein-Realschule/Lernpfad Teilbarkeit/4) Primzahlen: Unterschied zwischen den Versionen
K (LearningApp ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 24: | Zeile 24: | ||
{{Box|Übung x: Primzahlen|Bearbeite die folgende LearningApp.|Üben}} | {{Box|Übung x: Primzahlen|Bearbeite die folgende LearningApp.|Üben}} | ||
{{LearningApp|app=pnx3bc1o521|width=100%|height=400px}} | {{LearningApp|app=pnx3bc1o521|width=100%|height=400px}} | ||
Zeile 41: | Zeile 42: | ||
<ggb_applet id="dCK22eYY" width="900" height="600" border="888888" /> | <ggb_applet id="dCK22eYY" width="900" height="600" border="888888" /> | ||
<br> | |||
Weitere Link zum "Sieb des Eratosthenes" (FLINK-Team) https://www.geogebra.org/m/e6v5pfn4 | |||
<br> | |||
{{Box|Aufgabe|Folge dem untenstehenden Link, nimm dir einen Würfel und ein Arbeitsblatt von deinem Lehrer. Spiele mit deinem Partner.|Üben | {{Box|Aufgabe|Folge dem untenstehenden Link, nimm dir einen Würfel und ein Arbeitsblatt von deinem Lehrer. Spiele mit deinem Partner.|Üben |
Version vom 5. Mai 2022, 18:51 Uhr
Primzahlen
Eine Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, die "Eins" und sich selbst.
Beispiele:
Die ersten zehn Primzahlen sind 2; 3; 5; 7; 11; 13; 17; 19; 23 und 29.
Um zu prüfen, ob die Zahl 97 eine Primzahl ist, geht man die möglichen Teiler durch.
Geschicktes Überlegen spart dabei viel Arbeit.
- 2 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 2 (also 4; 6; 8; 10; ...) keine Teiler von 97.
- 3 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 3, also 6; 9; 12;... keine Teiler von 97.
- 5 ist kein Teiler von 97. Deshalb sind auch die Vielfachen von 5, also 10; 15; 20;... keine Teiler von 97.
- 7 ist kein Teiler von 97. Denn 97 : 7 = 13 Rest 6.
- 11 ist kein Teiler von 97. Denn 97 : 11 = 8 Rest 9.
Zahlen, die größer als 11 sind, braucht man als Teiler nicht mehr ausprobieren. Die Zahlen bis 10 sind aber schon überprüft.
Schau dir das folgende Video an:
Das Sieb des Eratosthenes
Weitere Link zum "Sieb des Eratosthenes" (FLINK-Team) https://www.geogebra.org/m/e6v5pfn4
Primfaktorzerlegung
Schau dir das folgende Video an:
Deine Lösungen von Nummer 10 kannst Du mit folgendem Primzahlfaktorenrechner überprüfen:
https://rechneronline.de/primfaktoren/
Nr. 11
a) 70
b) 210
c) 950
Nr. 12
a) Nein, hier ist eine 2 zu viel.
b) Das Ergebnis ist richtig
c) Das Ergebnis ist richtig
d) Nein, die Primfaktorzerlegung müsste lauten: 2 · 2 · 2 · 2 · 11
Sprinteraufgabe:
Bearbeite die Aufgabe unten auf der Seite unter den Beispielen
https://www.gut-erklaert.de/mathematik/primfaktorzerlegung-primfaktoren.html