{{Box|Die Parameter sportlich erarbeiten|Bearbeite im [[Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten|'''Lernpfad''']] das Kapitel zu'''<big> d</big>'''etlef und '''<big> e</big>'''mil.|Üben}}
{{Box|1=Die Scheitelpunktform entdecken|2=Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? |3=Lösung|Icon=brainy hdg-tablet04}}
{{Box|1=Die Scheitelpunktform entdecken|2=Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? Diskutiere mit deinem Partner/deiner Partnerin.|3=Lösung|Icon=brainy hdg-tablet04}}
{{Box|1=Die Scheitelpunktform quadratischer Funktionen|2=Die quadratische Funktion der Form '''f(x) = (x+d)²+e''' heißt '''Scheitelpunktform'''. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt '''S(-d|e)'''.<br>
{{Box|1=Die Scheitelpunktform quadratischer Funktionen|2=Die quadratische Funktion der Form '''f(x) = (x-e)²+f''' heißt '''Scheitelpunktform'''. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt '''S(-e|f)'''.<br>
Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.<br> Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}}
Der Parameter e verschiebt den Scheitelpunkt in x-Richtung: e>0 nach links verschoben und e<0 nach rechts.<br> Der Parameter d verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}}
{{Box|Übung 7 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft.
{{Box|Übung 1 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast.
{{Box|Übung 9|Nachdem du die Aufgaben auf der Seite realmath erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.
* S.16 Nr. 1
* S.16 Nr. 2
* S.16 Nr. 3
* S.16 Nr. 4
* S.16 Nr. 5
* S.16 Nr. 8
* S.16 Nr. 9
* S.16 Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)
* S.19 Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}
{{Lösung versteckt|Nutze zur Lösungskontrolle das obige Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt.|Tipp zur Lösungskontrolle Nr. 1|Verbergen}}
{{Lösung versteckt|Nutze auch hier zur Lösungskontrolle das obige Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.|Tipp zur Lösungskontrolle Nr. 3|Verbergen}}
{{Lösung versteckt|Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend.|Tipp zu Nr. 4|Verbergen}}
{{Lösung versteckt|Erinnerung Quadraten:<br>
[[Datei:Cartesian-coordinate-system-with-quadrant.svg|mini|Künstler: W!B:]]|zu Nr. 5: Einteilung des Koordinatensystems in Quadranten (Erinnerung)|Verbergen}}
{{Lösung versteckt|Nutze das Applet oben: Verschiebe den Scheitelpunkt so, dass der Graph durch die angegebene Punkte verläuft. Wo liegt dann der Scheitelpunkt? Begründe!|Tipp zu Nr. 8|Verbergen}}
{{Lösung versteckt|Skizzen zu 8a, 8b:<br>
[[Datei:SP10 S.16 Nr. 8a Tipp.png|rahmenlos|600x600px]]<br>
[[Datei:SP10 S.16 Nr. 8b Tipp.png|rahmenlos|600x600px]]|Tipp: Skizzen zu 8a und 8b|Verbergen}}
{{Lösung versteckt|Nutze das obige Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.|Tipp zu Nr. 9|Verbergen}}
{{Lösung versteckt|Bilderfolge zum Spiegeln der verschobenen Normalparabel an der y-Achse:<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}}
{{Box|Übung 10 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
{{Box|Übung 10 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
In diesem Lernpfad zu quadratischen Funktionen und Gleichungen wiederholst und übst du
quadratische Funktionen und quadratische Gleichungen,
welche Parameter der Funktionsgleichung für die Form und Lage der Parabel verantwortlich sind,
wie du Nullstellen quadratischer Funktionen berechnest,
mit quadratischen Funktionen und Gleichungen zu modellieren (Anwendungsaufgaben lösen).
1 Scheitelpunktform quadratischer Funktionen
Die Scheitelpunktform entdecken
Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf?
Die Scheitelpunktform quadratischer Funktionen
Die quadratische Funktion der Form f(x) = (x-e)²+f heißt Scheitelpunktform. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt S(-e|f).
Der Parameter e verschiebt den Scheitelpunkt in x-Richtung: e>0 nach links verschoben und e<0 nach rechts. Der Parameter d verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).
Übung 1 - Verschobene Normalparabel
Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast.
Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
Übung 2 - online
Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.
Appelt von Wolfgang Wengler
Übung 10 - Punktprobe
Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
Übungsblatt "Übung 1" zur Checkliste
Üben-Üben-Üben
Wenn du noch mehr üben möchtest, nutze die nachfolgenden GeoGebra-Applets von Bernhard Krügel.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.