Benutzer:L.hodankov/Quadratische Funktionen und Gleichungen üben: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Inhalte übernommen und angepasst)
Markierung: 2017-Quelltext-Bearbeitung
 
(Inhalte angepasst)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 13: Zeile 13:
* mit quadratischen Funktionen und Gleichungen zu modellieren (Anwendungsaufgaben lösen).|Lernpfad}}
* mit quadratischen Funktionen und Gleichungen zu modellieren (Anwendungsaufgaben lösen).|Lernpfad}}


===5 Scheitelpunktform quadratischer Funktionen===
===1 Scheitelpunktform quadratischer Funktionen===


{{Box|Die Parameter sportlich erarbeiten|Bearbeite im [[Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten|'''Lernpfad''']] das Kapitel zu'''<big> d</big>'''etlef und '''<big> e</big>'''mil.|Üben}}


 
{{Box|1=Die Scheitelpunktform entdecken|2=Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? |3=Lösung|Icon=brainy hdg-tablet04}}
{{Box|1=Die Scheitelpunktform entdecken|2=Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? Diskutiere mit deinem Partner/deiner Partnerin.|3=Lösung|Icon=brainy hdg-tablet04}}
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />


{{Box|1=Die Scheitelpunktform quadratischer Funktionen|2=Die quadratische Funktion der Form '''f(x) = (x+d)²+e''' heißt '''Scheitelpunktform'''. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt '''S(-d&#124;e)'''.<br>
{{Box|1=Die Scheitelpunktform quadratischer Funktionen|2=Die quadratische Funktion der Form '''f(x) = (x-e)²+f''' heißt '''Scheitelpunktform'''. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt '''S(-e&#124;f)'''.<br>
Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.<br> Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}}
Der Parameter e verschiebt den Scheitelpunkt in x-Richtung: e>0 nach links verschoben und e<0 nach rechts.<br> Der Parameter d verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}}


{{Box|Übung 7 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft.
{{Box|Übung 1 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast.  
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.html Aufgabe 1]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.html Aufgabe 1]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.html Aufgabe 2]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.html Aufgabe 2]
Zeile 46: Zeile 44:
<br>
<br>


{{Box|Übung 8 - online|Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.|Üben}}
{{Box|Übung 2 - online|Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.|Üben}}


<ggb_applet id="vmjjuqdt" width="827" height="526" border="888888" />
<ggb_applet id="vmjjuqdt" width="827" height="526" border="888888" />
<br>Appelt von Wolfgang Wengler<br>
<br>Appelt von Wolfgang Wengler<br>


{{Box|Übung 9|Nachdem du die Aufgaben auf der Seite realmath erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.
* S.16 Nr. 1
* S.16 Nr. 2
* S.16 Nr. 3
* S.16 Nr. 4
* S.16 Nr. 5
* S.16 Nr. 8
* S.16 Nr. 9
* S.16 Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)
* S.19 Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}
{{Lösung versteckt|Nutze zur Lösungskontrolle das obige Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt.|Tipp zur Lösungskontrolle Nr. 1|Verbergen}}
{{Lösung versteckt|Nutze auch hier zur Lösungskontrolle das obige Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.|Tipp zur Lösungskontrolle Nr. 3|Verbergen}}
{{Lösung versteckt|Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend.|Tipp zu Nr. 4|Verbergen}}
{{Lösung versteckt|Erinnerung Quadraten:<br>
[[Datei:Cartesian-coordinate-system-with-quadrant.svg|mini|Künstler: W!B:]]|zu Nr. 5: Einteilung des Koordinatensystems in Quadranten (Erinnerung)|Verbergen}}
{{Lösung versteckt|Nutze das Applet oben: Verschiebe den Scheitelpunkt so, dass der Graph durch die angegebene Punkte verläuft. Wo liegt dann der Scheitelpunkt? Begründe!|Tipp zu Nr. 8|Verbergen}}
{{Lösung versteckt|Skizzen zu 8a, 8b:<br>
[[Datei:SP10 S.16 Nr. 8a Tipp.png|rahmenlos|600x600px]]<br>
[[Datei:SP10 S.16 Nr. 8b Tipp.png|rahmenlos|600x600px]]|Tipp: Skizzen zu 8a und 8b|Verbergen}}
{{Lösung versteckt|Nutze das obige Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.|Tipp zu Nr. 9|Verbergen}}
{{Lösung versteckt|Bilderfolge zum Spiegeln der verschobenen Normalparabel an der y-Achse:<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 1.png|rahmenlos|600x600px]]<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 2.png|rahmenlos|600x600px]]<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 3.png|rahmenlos|600x600px]]<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}}


{{Box|Übung 10 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
{{Box|Übung 10 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
* S. 16 Nr. 6|Üben}}
* Übungsblatt "Übung 1" zur Checkliste|Üben}}





Version vom 9. März 2022, 19:55 Uhr

Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Benutzer:Buss-Haskert/Quadratische_Funktionen. Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.

Herzlichen Dank!

Seite im Aufbau!

© Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)
Jardín de flores
Künstler: User:Evdcoldeportes


Quadratische Funktionen und Gleichungen

In diesem Lernpfad zu quadratischen Funktionen und Gleichungen wiederholst und übst du

  • quadratische Funktionen und quadratische Gleichungen,
  • welche Parameter der Funktionsgleichung für die Form und Lage der Parabel verantwortlich sind,
  • wie du Nullstellen quadratischer Funktionen berechnest,
  • mit quadratischen Funktionen und Gleichungen zu modellieren (Anwendungsaufgaben lösen).

1 Scheitelpunktform quadratischer Funktionen

Die Scheitelpunktform entdecken
Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf?
GeoGebra


Die Scheitelpunktform quadratischer Funktionen

Die quadratische Funktion der Form f(x) = (x-e)²+f heißt Scheitelpunktform. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt S(-e|f).

Der Parameter e verschiebt den Scheitelpunkt in x-Richtung: e>0 nach links verschoben und e<0 nach rechts.
Der Parameter d verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).


Übung 1 - Verschobene Normalparabel

Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast.


GeoGebra

Applet von Hans-Jürgen Elschenbroich

GeoGebra
GeoGebra

Applets von Wolfgang Wengler

Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:

Idee Flipchart.png

Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.



Übung 2 - online
Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.
GeoGebra


Appelt von Wolfgang Wengler


Übung 10 - Punktprobe

Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.

  • Übungsblatt "Übung 1" zur Checkliste


Üben-Üben-Üben
Wenn du noch mehr üben möchtest, nutze die nachfolgenden GeoGebra-Applets von Bernhard Krügel.
GeoGebra


GeoGebra


GeoGebra


GeoGebra