Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 541: | Zeile 541: | ||
# Geradenpunkte <math>G</math> und <math>H</math> in Abhängigkeit von dem jeweiligen Geradenparameter<br /><math>G_s(0|1+s|2+s)</math> und <math>H_t(7+4t|7-5t|2t)</math> | # Geradenpunkte <math>G</math> und <math>H</math> in Abhängigkeit von dem jeweiligen Geradenparameter<br /><math>G_s(0|1+s|2+s)</math> und <math>H_t(7+4t|7-5t|2t)</math> | ||
# Verbindungsvektor <math>\vec{G_s H_t}</math> in Abhängigkeit von den Geradenparametern <math>t</math> und <math>s</math>:<br /> <math>\vec{ | # Verbindungsvektor <math>\vec{G_s H_t}</math> in Abhängigkeit von den Geradenparametern <math>t</math> und <math>s</math>:<br /> <math>\vec{G_sH_t}=\begin{pmatrix} 7+4t \\ 7-5t-(1+s) \\ 2t-(2+s) \end{pmatrix}=\begin{pmatrix} 7+4t \\ 6-5t-s \\ 2t-2-s \end{pmatrix}</math> | ||
# <math>s</math> und <math>t</math> so bestimmen, dass <math>\vec{G_s H_t}</math> orthogonal zu den Richtungsvektoren von <math>g</math> und <math>h</math> ist, also das lineare | # <math>s</math> und <math>t</math> so bestimmen, dass <math>\vec{G_s H_t}</math> orthogonal zu den Richtungsvektoren von <math>g</math> und <math>h</math> ist, also das lineare Gleichungssystem <math>\vec{G_s H_t}\ast \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} =0</math> und <math>\vec{G_s H_t}\ast\begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} =0</math> lösen:<br /> <math>0=(6-5t-s)\cdot 1+(2t-2-s) \cdot 1=4-3t-2s</math> und <math>0=(7+4t)\cdot 4+(6-5t-s)\cdot (-5)+(2t-2-s)\cdot 2=-6+45t+3t</math> liefert <math>s=2</math> und <math>t=0</math>. | ||
# Damit erhält man die Lotfußpunkte <math>G(0|3|4)</math> und <math>H(7|7|0)</math>. | # Damit erhält man die Lotfußpunkte <math>G(0|3|4)</math> und <math>H(7|7|0)</math>. | ||
Also ist <math>d(g;h)=|\vec{GH}|=\sqrt{(7-0)^2+(7-3)^2+(4-0)^2}=\sqrt{81}=9</math>. | Also ist <math>d(g;h)=|\vec{GH}|=\sqrt{(7-0)^2+(7-3)^2+(4-0)^2}=\sqrt{81}=9</math>. | ||
Zeile 551: | Zeile 551: | ||
Es gibt eine Ebene <math>E</math>, sodass <math>g</math> in <math>E</math> liegt und <math>h</math> parallel zu <math>E</math> ist. Für diese Ebene <math>E</math> ist dann der Abstand zwischen den Geraden <math>d(g,h)</math> gleich dem Abstand zwischen <math>E</math> und einem beliebigen Punkt <math>H</math> auf <math>h</math>. | Es gibt eine Ebene <math>E</math>, sodass <math>g</math> in <math>E</math> liegt und <math>h</math> parallel zu <math>E</math> ist. Für diese Ebene <math>E</math> ist dann der Abstand zwischen den Geraden <math>d(g,h)</math> gleich dem Abstand zwischen <math>E</math> und einem beliebigen Punkt <math>H</math> auf <math>h</math>. | ||
# Stelle die Ebenengleichung in Koordinatenform der Ebene <math>E</math> auf, sodass die | # Stelle die Ebenengleichung in Koordinatenform der Ebene <math>E</math> auf, sodass die Gerade <math>g</math> in <math>E</math> liegt und die Gerade <math>h</math> parallel zu <math>E</math> ist: Jeder Normalenvektor von dieser Ebene <math>E</math> ist orthogonal zu den Richtungsvektoren von den Geraden <math>g</math> und <math>h</math>. Bestimme also aus den Gleichungen <math>\vec{u}\ast\vec{n}=0</math> und <math>\vec{v}\ast\vec{n}=0</math> einen Normalenvektor <math>\vec{n}=\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}</math>.<br /> Die Ebenengleichung in Koordinatenform ist dann <math>E:n_1\cdot x_1+ n_2\cdot x_2 +n_3\cdot x_3=b </math>.<br /> Die Gerade <math>g</math> soll in <math>E</math> liegen. Bestimme also <math>b</math>, indem du einen Punkt der Geraden <math>g</math> in die Ebenengleichung einsetzt. | ||
# Wähle einen beliebigen Punkt <math>H</math> auf der Geraden <math>h</math>. (Da <math>h</math> parallel zu <math>E</math> ist, haben alle Punkte von <math>h</math> den gleichen Abstand zu <math>E</math>.) | # Wähle einen beliebigen Punkt <math>H</math> auf der Geraden <math>h</math>. (Da <math>h</math> parallel zu <math>E</math> ist, haben alle Punkte von <math>h</math> den gleichen Abstand zu <math>E</math>.) | ||
# Bestimme mit der Formel für den Abstand eines Punktes von einer Ebene oder dem Lotfußpunktverfahren (siehe Abschnitt Abstand Punkt Ebene) den Abstand <math>d(E;H)</math>. So, wie wir die Ebene <math>E</math> konstruiert haben, ist nun der Abstand zwischen den windeschiefen Geraden <math>d(g;h)=d(E;H)</math>. | # Bestimme mit der Formel für den Abstand eines Punktes von einer Ebene oder dem Lotfußpunktverfahren (siehe Abschnitt Abstand Punkt Ebene) den Abstand <math>d(E;H)</math>. So, wie wir die Ebene <math>E</math> konstruiert haben, ist nun der Abstand zwischen den windeschiefen Geraden <math>d(g;h)=d(E;H)</math>. |
Version vom 22. Juni 2021, 15:22 Uhr
Einstieg
Im Folgenden werden nun die Verfahren für die verschiedenen Abstandsprobleme wiederholt. Je nachdem, was du noch üben willst, kannst du dir den jeweiligen Abschnitt dieses Lernpfadkapitels anschauen.
Abstand eines Punktes von einer Ebene
Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen.
Abstand eines Punktes von einer Geraden
Abstand zweier windschiefer Geraden