Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 63: | Zeile 63: | ||
===Übungen=== | ===Übungen=== | ||
{{Box|1= | {{Box|1= Aufgabe 1: Das Skalarprodukt berechnen | ||
|2= Berechne das Skalarprodukt der beiden Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Notiere dein Ergebnis in dem jeweiligen Kästchen. | |2= Berechne das Skalarprodukt der beiden Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Notiere dein Ergebnis in dem jeweiligen Kästchen. | ||
{{LearningApp|width=100%|height=500px|app=19757783}} | {{LearningApp|width=100%|height=500px|app=19757783}} | ||
Zeile 69: | Zeile 69: | ||
{{Box|1= | {{Box|1= Aufgabe 2: Skalarprodukt oder Multiplikation? | ||
|2= Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt. | |2= Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt. | ||
{{LearningApp|width=100%|height=500px|app=20212500}} | {{LearningApp|width=100%|height=500px|app=20212500}} | ||
Zeile 78: | Zeile 78: | ||
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}} | |Farbe= {{Farbe|orange}}|3= Arbeitsmethode}} | ||
{{Box|1= | {{Box|1= Aufgabe 3: Orthogonalität I | ||
|2= Stehen die Vektoren senkrecht (orthogonal) aufeinander? {{LearningApp|width=100%|height=500px|app=2695651}} | |2= Stehen die Vektoren senkrecht (orthogonal) aufeinander? {{LearningApp|width=100%|height=500px|app=2695651}} | ||
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}} | |Farbe= {{Farbe|orange}}|3= Arbeitsmethode}} | ||
{{Box|1= | {{Box|1= Aufgabe 4: Orthogonalität II | ||
|2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind. | |2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind. | ||
<quiz display="simple"> | <quiz display="simple"> | ||
Zeile 102: | Zeile 102: | ||
|3= Arbeitsmethode}} | |3= Arbeitsmethode}} | ||
{{Box|1= | {{Box|1= Aufgabe 5: Lagebeziehungen von Vektoren | ||
|2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Lässt sich aus dieser Information die Lagebeziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im zweidimensionalen Raum <math> \R^2 </math> erschließen? | |2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Lässt sich aus dieser Information die Lagebeziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im zweidimensionalen Raum <math> \R^2 </math> erschließen? | ||
{{Lösung versteckt|1= Das <math> \perp </math> in <math> \vec{u} \perp \vec{v} </math> bedeutet, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind. | {{Lösung versteckt|1= Das <math> \perp </math> in <math> \vec{u} \perp \vec{v} </math> bedeutet, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind. | ||
Zeile 118: | Zeile 118: | ||
|3= Arbeitsmethode}} | |3= Arbeitsmethode}} | ||
{{Box|1= | {{Box|1= Aufgabe 6: Beweis des Distributivgesetzes | ||
|2= Beweise das Distributivgesetz, also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>. | |2= Beweise das Distributivgesetz, also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Schreibe zunächst den Vektor <math> \vec{u} </math> als Spaltenvektor und überlege dir, was das Skalarprodukt bedeutet. | Schreibe zunächst den Vektor <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektor und überlege dir, was das Skalarprodukt bedeutet. | ||
|2= Tipp 1|3= Einklappen}} | |2= Tipp 1|3= Einklappen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Addiere die Vektoren komponentenweise und sortiere die Terme sinnvoll. | |||
|2= Tipp 2|3= Einklappen}} | |2= Tipp 2|3= Einklappen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
1. | 1. Schreibe die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektoren. | ||
<math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\ | <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix})</math> | ||
2. | 2. Addiere die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> komponentenweise. | ||
<math> = u_1 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{v} + u_2 \cdot \vec{w} + u_3 \cdot \vec{v} + u_3 \cdot \vec{w} </math> | <math> = u_1 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{v} + u_2 \cdot \vec{w} + u_3 \cdot \vec{v} + u_3 \cdot \vec{w} </math> | ||
3. | 3. Sortiere die Terme sinnvoll. | ||
<math> = u_1 \cdot \vec{v} + u_2 \cdot \vec{v} + u_3 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{w} + u_3 \cdot \vec{w} </math> | <math> = u_1 \cdot \vec{v} + u_2 \cdot \vec{v} + u_3 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{w} + u_3 \cdot \vec{w} </math> | ||
4. | 4. Fasse die Terme zusammen. | ||
<math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math> | <math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math> | ||
Zeile 173: | Zeile 173: | ||
===Übungen=== | ===Übungen=== | ||
====Winkel zwischen zwei Vektoren==== | ====Winkel zwischen zwei Vektoren==== | ||
{{Box|1= | {{Box|1= Aufgabe 7: Winkelberechnung | ||
|2= Berechne die Größe des Winkels <math> \alpha </math> zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle. | |2= Berechne die Größe des Winkels <math> \alpha </math> zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle. | ||
<quiz display="simple"> | <quiz display="simple"> | ||
Zeile 194: | Zeile 194: | ||
{{Box|1= | {{Box|1= Aufgabe 8: Räumliches Vorstellungsvermögen | ||
|2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null? | |2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null? | ||
Zeile 257: | Zeile 257: | ||
{{Box|Schnittwinkel zwischen zwei Geraden|Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. <math> 0^\circ \leq \alpha \leq 90^\circ </math>. Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.|3= Hinweis}} | {{Box|Schnittwinkel zwischen zwei Geraden|Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. <math> 0^\circ \leq \alpha \leq 90^\circ </math>. Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.|3= Hinweis}} | ||
{{Box|1= | {{Box|1= Aufgabe 9: Schnittwinkel berechnen | ||
|2= Berechne den Schnittwinkel der Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>. | |2= Berechne den Schnittwinkel der Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>. | ||
Zeile 297: | Zeile 297: | ||
{{Box|1= | {{Box|1= Aufgabe 10: Innenwinkel in einem Dreieck | ||
|2= In einem kartesischen Koordinatensystem sind die Punkte <math> A (1|1|2)</math>, <math> B(2|2|3)</math> und <math> C(3|1|0)</math> gegeben. | |2= In einem kartesischen Koordinatensystem sind die Punkte <math> A (1|1|2)</math>, <math> B(2|2|3)</math> und <math> C(3|1|0)</math> gegeben. | ||
Version vom 20. Juni 2021, 15:10 Uhr
Skalarprodukt und Orthogonalität
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können. Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.
Definitionen und Eigenschaften
Übungen
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
Einführung
Übungen
Winkel zwischen zwei Vektoren
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.