Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 63: Zeile 63:
===Übungen===
===Übungen===


{{Box|1= Übung 1: Das Skalarprodukt berechnen
{{Box|1= Aufgabe 1: Das Skalarprodukt berechnen
|2= Berechne das Skalarprodukt der beiden Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Notiere dein Ergebnis in dem jeweiligen Kästchen.
|2= Berechne das Skalarprodukt der beiden Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Notiere dein Ergebnis in dem jeweiligen Kästchen.
{{LearningApp|width=100%|height=500px|app=19757783}}
{{LearningApp|width=100%|height=500px|app=19757783}}
Zeile 69: Zeile 69:




{{Box|1= Übung 2: Skalarprodukt oder Multiplikation?
{{Box|1= Aufgabe 2: Skalarprodukt oder Multiplikation?
|2= Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt.
|2= Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt.
{{LearningApp|width=100%|height=500px|app=20212500}}
{{LearningApp|width=100%|height=500px|app=20212500}}
Zeile 78: Zeile 78:
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Übung 3: Orthogonalität I
{{Box|1= Aufgabe 3: Orthogonalität I
|2= Stehen die Vektoren senkrecht (orthogonal) aufeinander? {{LearningApp|width=100%|height=500px|app=2695651}}
|2= Stehen die Vektoren senkrecht (orthogonal) aufeinander? {{LearningApp|width=100%|height=500px|app=2695651}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}
|Farbe= {{Farbe|orange}}|3= Arbeitsmethode}}


{{Box|1= Übung 4: Orthogonalität II
{{Box|1= Aufgabe 4: Orthogonalität II
|2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
|2= Bestimme die fehlende Koordinate so, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
<quiz display="simple">
<quiz display="simple">
Zeile 102: Zeile 102:
|3= Arbeitsmethode}}
|3= Arbeitsmethode}}


{{Box|1= Übung 5: Lagebeziehungen von Vektoren
{{Box|1= Aufgabe 5: Lagebeziehungen von Vektoren
|2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Lässt sich aus dieser Information die Lagebeziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im zweidimensionalen Raum <math> \R^2 </math> erschließen?
|2= Sei <math> \vec{u} \perp \vec{v} </math> und <math> \vec{v} \perp \vec{w} </math>. Lässt sich aus dieser Information die Lagebeziehung von <math> \vec{u} </math> und <math> \vec{w} </math> im zweidimensionalen Raum <math> \R^2 </math> erschließen?
{{Lösung versteckt|1= Das <math> \perp </math> in <math> \vec{u} \perp \vec{v} </math> bedeutet, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
{{Lösung versteckt|1= Das <math> \perp </math> in <math> \vec{u} \perp \vec{v} </math> bedeutet, dass die Vektoren <math> \vec{u} </math> und <math> \vec{v} </math> orthogonal zueinander sind.
Zeile 118: Zeile 118:
|3= Arbeitsmethode}}
|3= Arbeitsmethode}}


{{Box|1= Übung 6: Beweis des Distributivgesetzes
{{Box|1= Aufgabe 6: Beweis des Distributivgesetzes
|2= Beweise das Distributivgesetz, also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>.
|2= Beweise das Distributivgesetz, also <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>.


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Schreibe zunächst den Vektor <math> \vec{u} </math> als Spaltenvektor und überlege dir, was das Skalarprodukt bedeutet.
Schreibe zunächst den Vektor <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektor und überlege dir, was das Skalarprodukt bedeutet.
|2= Tipp 1|3= Einklappen}}
|2= Tipp 1|3= Einklappen}}


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Löse die Klammern auf und sortiere die Terme sinnvoll.
Addiere die Vektoren komponentenweise und sortiere die Terme sinnvoll.
|2= Tipp 2|3= Einklappen}}
|2= Tipp 2|3= Einklappen}}


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
1. Den Vektor <math> \vec{u} </math> als Spaltenvektor darstellen.
1. Schreibe die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> als Spaltenvektoren.


<math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\vec{v} + \vec{w})</math>
<math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix})</math>


2. Die Klammern mit Hilfe des Skalarprodukts auflösen.
2. Addiere die Vektoren <math> \vec{u}, \vec{v} </math> und <math> \vec{w} </math> komponentenweise.


<math> = u_1 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{v} + u_2 \cdot \vec{w} + u_3 \cdot \vec{v} + u_3 \cdot \vec{w} </math>
<math> = u_1 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{v} + u_2 \cdot \vec{w} + u_3 \cdot \vec{v} + u_3 \cdot \vec{w} </math>


3. Die Terme sortieren.
3. Sortiere die Terme sinnvoll.


<math> = u_1 \cdot \vec{v} + u_2 \cdot \vec{v} + u_3 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{w} +  u_3 \cdot \vec{w} </math>
<math> = u_1 \cdot \vec{v} + u_2 \cdot \vec{v} + u_3 \cdot \vec{v} + u_1 \cdot \vec{w} + u_2 \cdot \vec{w} +  u_3 \cdot \vec{w} </math>


4. Die Terme zusammenfassen.
4. Fasse die Terme zusammen.


<math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>
<math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math>
Zeile 173: Zeile 173:
===Übungen===
===Übungen===
====Winkel zwischen zwei Vektoren====
====Winkel zwischen zwei Vektoren====
{{Box|1= Übung 7: Winkelberechnung
{{Box|1= Aufgabe 7: Winkelberechnung
|2= Berechne die Größe des Winkels <math> \alpha </math> zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
|2= Berechne die Größe des Winkels <math> \alpha </math> zwischen den Vektoren <math> \vec{u} </math> und <math> \vec{v} </math>. Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
<quiz display="simple">
<quiz display="simple">
Zeile 194: Zeile 194:




{{Box|1= Übung 8: Räumliches Vorstellungsvermögen
{{Box|1= Aufgabe 8: Räumliches Vorstellungsvermögen
|2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null?
|2= Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null?


Zeile 257: Zeile 257:
{{Box|Schnittwinkel zwischen zwei Geraden|Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. <math> 0^\circ \leq \alpha \leq 90^\circ </math>. Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.|3= Hinweis}}
{{Box|Schnittwinkel zwischen zwei Geraden|Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. <math> 0^\circ \leq \alpha \leq 90^\circ </math>. Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.|3= Hinweis}}


{{Box|1= Übung 9: Schnittwinkel berechnen
{{Box|1= Aufgabe 9: Schnittwinkel berechnen
|2= Berechne den Schnittwinkel der Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>.
|2= Berechne den Schnittwinkel der Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>.


Zeile 297: Zeile 297:




{{Box|1= Übung 10: Innenwinkel in einem Dreieck
{{Box|1= Aufgabe 10: Innenwinkel in einem Dreieck
|2= In einem kartesischen Koordinatensystem sind die Punkte <math> A (1|1|2)</math>, <math> B(2|2|3)</math> und <math> C(3|1|0)</math> gegeben.
|2= In einem kartesischen Koordinatensystem sind die Punkte <math> A (1|1|2)</math>, <math> B(2|2|3)</math> und <math> C(3|1|0)</math> gegeben.



Version vom 20. Juni 2021, 15:10 Uhr

Info

In diesem Lernpfadkapitel beschäftigst du dich mit dem Skalarprodukt und dem Winkel zwischen zwei Vektoren beziehungsweise dem Winkel zwischen zwei Geraden. Du lernst...

  • ... das Skalarprodukt zu berechnen und geometrisch zu deuten.
  • ... Vektoren und Geraden mit Hilfe des Skalarprodukts auf Orthogonalität zu überprüfen.
  • ... den Winkel zwischen Vektoren und Geraden zu berechnen.
  • ... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen.

Dazu haben wir für dich Übungen in verschiedenen Schwierigkeitsstufen:

  • Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
  • und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Wir wünschen dir viel Erfolg!

Skalarprodukt und Orthogonalität

In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können. Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.

Definitionen und Eigenschaften

Definition: Skalarprodukt

Für die beiden Vektoren und kann man das Skalarprodukt berechnen mit .

Als Ergebnis des Skalarprodukts erhälst du keinen Vektor, sondern eine reelle Zahl.


Eigenschaften des Skalarprodukts

Für das Skalarprodukt gilt das...

  • Kommutativgesetz. Es gilt also .
  • Distributivgesetz. Es gilt also .
  • Assoziativgesetz. Es gilt also mit .


Merksatz: Orthogonalität

Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt null ist.


Satz: Sonderfälle

Neben dem Sonderfall der Orthogonalität, d.h. mit , gibt es noch zwei weitere:

  • Wenn mit , dann haben die beiden Vektoren die gleiche Richtung.
  • Wenn mit , dann haben die beiden Vektoren entgegengesetzte Richtungen.

Außerdem lässt sich anhand des Skalarproduktes leicht erkennen, ob der Winkel zwischen den beiden Vektoren spitz oder stumpf ist:

  • Wenn das Skalarprodukt positiv ist, handelt es sich um einen spitzen Winkel, d.h. .
  • Wenn das Skalarprodukt negativ ist, handelt es sich um einen stumpfen Winkel, d.h. .


Übungen

Aufgabe 1: Das Skalarprodukt berechnen

Berechne das Skalarprodukt der beiden Vektoren und . Notiere dein Ergebnis in dem jeweiligen Kästchen.


Aufgabe 2: Skalarprodukt oder Multiplikation?

Entscheide in den folgenden Aufgaben, ob es sich um ein Skalarprodukt oder eine Multiplikation handelt.



Aufgabe 3: Orthogonalität I

Stehen die Vektoren senkrecht (orthogonal) aufeinander?


Aufgabe 4: Orthogonalität II

Bestimme die fehlende Koordinate so, dass die Vektoren und orthogonal zueinander sind.

1

2

3


Aufgabe 5: Lagebeziehungen von Vektoren

Sei und . Lässt sich aus dieser Information die Lagebeziehung von und im zweidimensionalen Raum erschließen?

Gilt dies auch für den dreidimensionalen Raum ?


Aufgabe 6: Beweis des Distributivgesetzes

Beweise das Distributivgesetz, also .


Winkel

Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.

Einführung

Definition: Winkel zwischen zwei Vektoren

Die beiden Vektoren und haben den Innenwinkel .

Es gilt:

Stellt man die Formel nach um, erhält man: .

Übungen

Winkel zwischen zwei Vektoren

Aufgabe 7: Winkelberechnung

Berechne die Größe des Winkels zwischen den Vektoren und . Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.

1

2

3


Aufgabe 8: Räumliches Vorstellungsvermögen

Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeigern einer Uhr täglich null?


Winkel zwischen zwei Geraden

In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.


Schnittwinkel zweier Geraden

Wenn sich zwei Geraden schneiden, kann man einen Schnittwinkel berechnen. Um den Schnittwinkel zwischen zwei Geraden zu berechnen, betrachtest du lediglich die Richtungsvektoren der Geraden.


Vorgehensweise
Lagebeziehungen von Geraden


Schnittwinkel zwischen zwei Geraden
Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. . Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.


Aufgabe 9: Schnittwinkel berechnen

Berechne den Schnittwinkel der Geraden und . .




Aufgabe 10: Innenwinkel in einem Dreieck

In einem kartesischen Koordinatensystem sind die Punkte , und gegeben.

Bestimme die Größe der Innenwinkel des Dreiecks ABC sowie die Seitenlängen des Dreiecks.



Wie geht es nun weiter?

Wenn du alle Aufgaben richtig beantwortet hast:

  • Suche dir aus den folgenden Kapiteln eines (oder mehrere) aus. In jedem Kapitel gibt es auch Knobelaufgaben, mit denen du dich beschäftigen kannst.

Wenn du einen oder auch mehrere Fehler gemacht hast: