Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 560: | Zeile 560: | ||
Es gibt eine Ebene <math>E</math>, sodass <math>g</math> in <math>E</math> liegt und <math>h</math> parallel zu <math>E</math> ist. Für diese Ebene <math>E</math> ist dann der Abstand zwischen den Geraden <math>d(g,h)</math> gleich dem Abstand zwischen <math>E</math> und einem beliebigen Punkt <math>H</math> auf <math>h</math>. | Es gibt eine Ebene <math>E</math>, sodass <math>g</math> in <math>E</math> liegt und <math>h</math> parallel zu <math>E</math> ist. Für diese Ebene <math>E</math> ist dann der Abstand zwischen den Geraden <math>d(g,h)</math> gleich dem Abstand zwischen <math>E</math> und einem beliebigen Punkt <math>H</math> auf <math>h</math>. | ||
# Stelle die Ebenengleichung in Koordinatenform der Ebene <math>E</math> auf, sodass die GErade <math>g</math> in <math>E</math> liegt und die Gerade <math>h</math> parallel zu <math>E</math> ist: | |||
Jeder Normalenvektor von dieser Ebene <math>E</math> ist orthogonal zu den Richtungsvektoren von den Geraden <math>g</math> und <math>h</math>. Bestimme also aus den Gleichungen <math>\vec{u}\ast\vec{n}=0</math> und <math>\vec{v}\ast\vec{n}=0</math> einen Normalenvektor <math>\vec{n}=\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}</math>. | Jeder Normalenvektor von dieser Ebene <math>E</math> ist orthogonal zu den Richtungsvektoren von den Geraden <math>g</math> und <math>h</math>. Bestimme also aus den Gleichungen <math>\vec{u}\ast\vec{n}=0</math> und <math>\vec{v}\ast\vec{n}=0</math> einen Normalenvektor <math>\vec{n}=\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}</math>. | ||
Die Ebenengleichung in Koordinatenform ist dann <math>E:n_1\cdot x_1+ n_2\cdot x_2 +n_3\cdot x_3=b </math>. | Die Ebenengleichung in Koordinatenform ist dann <math>E:n_1\cdot x_1+ n_2\cdot x_2 +n_3\cdot x_3=b </math>. | ||
Die Gerade <math>g</math> soll in <math>E</math> liegen. Bestimme also <math>b</math>, indem du einen Punkt der Geraden <math>g</math> in die Ebenengleichung einsetzt. | Die Gerade <math>g</math> soll in <math>E</math> liegen. Bestimme also <math>b</math>, indem du einen Punkt der Geraden <math>g</math> in die Ebenengleichung einsetzt. | ||
# Wähle einen beliebigen Punkt <math>H</math> auf der Geraden <math>h</math>. (Da <math>h</math> parallel zu <math>E</math> ist, haben alle Punkte von <math>h</math> den gleichen Abstand zu <math>E</math>.) | |||
# Bestimme mit der Formel für den Abstand eines Punktes von einer Ebene oder dem Lotfußpunktverfahren (siehe Abschnitt Abstand Punkt Ebene) den Abstand <math>d(E;H)</math>. So, wie wir die Ebene <math>E</math> konstruiert haben, ist nun der Abstand zwischen den windeschiefen Geraden <math>d(g;h)=d(E;H)</math>. | |||
Zeile 618: | Zeile 616: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Da die Tunnel einen Radius von <math>2,5</math>cm haben und die Geraden in dem Modell in der Mitte der jeweiligen Tunnel liegen, müssen die Geraden mindestens einen Abstand von <math>2,5+15+2,5=20</math> haben, damit die Tunnel nicht einstürzen. | Da die Tunnel jeweils einen Radius von <math>2,5</math>cm haben und die Geraden in dem Modell in der Mitte der jeweiligen Tunnel liegen, müssen die Geraden mindestens einen Abstand von <math>2,5+15+2,5=20</math>cm haben, damit die Tunnel nicht einstürzen. | ||
Wir bestimmen den Abstand zwischen den Geraden mithilfe einer Hilfsebene <math>E</math>, die parallel zur Geraden <math>h</math> ist und in der die Gerade <math>g</math> liegt. | Wir bestimmen den Abstand zwischen den Geraden mithilfe einer Hilfsebene <math>E</math>, die parallel zur Geraden <math>h</math> ist und in der die Gerade <math>g</math> liegt. | ||
Zeile 630: | Zeile 628: | ||
Da der Abstand zwischen den Geraden gleich dem Abstand zwischen der Ebene <math>E</math> und einem beliebigen Punkt auf der zu <math>E</math> parallelen Geraden <math>h</math> ist, erhält man nun mit der Formel für den Abstand eines Punktes von einer Ebene <math>d(g;h)=d(E;H)=\frac {|\frac{2}{3}\cdot 6+ \frac{3}{4}\cdot 6 + 1\cdot 18-\frac{29}{12}|}{\sqrt{(\frac{2}{3}^2+(\frac{3}{4})^2+1^2}}=17</math>. | Da der Abstand zwischen den Geraden gleich dem Abstand zwischen der Ebene <math>E</math> und einem beliebigen Punkt auf der zu <math>E</math> parallelen Geraden <math>h</math> ist, erhält man nun mit der Formel für den Abstand eines Punktes von einer Ebene <math>d(g;h)=d(E;H)=\frac {|\frac{2}{3}\cdot 6+ \frac{3}{4}\cdot 6 + 1\cdot 18-\frac{29}{12}|}{\sqrt{(\frac{2}{3}^2+(\frac{3}{4})^2+1^2}}=17</math>. | ||
Die Geraden haben also einen kleineren Abstand als <math>20</math> | Die Geraden haben also einen kleineren Abstand als <math>20</math>cm. Das heißt, die Tunnel sind nicht überall mindestens <math>15</math>cm voneinander entfernt (sondern an einer Stelle nur <math>17</math>cm-<math>2\dot 2,5</math>cm<math>=12</math>cm) und sie werden einstürzen. | ||
Die einzige Lösung für die Maulwürfe ist es, an der kritischen Stelle eine gemeinsame Höhle zu bauen. :) | Die einzige Lösung für die Maulwürfe ist es, an der kritischen Stelle eine gemeinsame Höhle zu bauen. :) | ||
Zeile 638: | Zeile 636: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Die Geraden haben einen Abstand von <math> | Die Geraden haben einen Abstand von <math>17</math>cm. Zwischen den Tunneln sind also an einer Stelle nur <math>12</math>cm Erde und sie werden einstürzen. | ||
Dann bauen die beiden Maulwürfe an der kritischen Stelle einfach eine gemeinsame Höhle. :) | Dann bauen die beiden Maulwürfe an der kritischen Stelle einfach eine gemeinsame Höhle. :) |
Version vom 4. Juni 2021, 11:36 Uhr
Einstieg
Im Folgenden werden nun die Verfahren für die verschiedenen Abstandsprobleme wiederholt. Je nachdem, was du noch üben willst, kannst du dir den jeweiligen Abschnitt dieses Lernpfadkapitels anschauen.
Abstand eines Punktes von einer Ebene
Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen.
Abstand eines Punktes von einer Geraden
Abstand zweier windschiefer Geraden