Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung |
||
Zeile 85: | Zeile 85: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
|2=Lösungsweg Anzeigen|3=Lösungsweg Verbergen}} | |2=Lösungsweg Anzeigen|3=Lösungsweg Verbergen}} | ||
Zeile 124: | Zeile 123: | ||
==Lösbarkeit linearer Gleichungssysteme== | ==Lösbarkeit linearer Gleichungssysteme== | ||
{{Box | 1=Aufgabe | {{Box | 1=Aufgabe 5: Wiederholung | 2= | ||
Bearbeite alle Teilaufgaben mit dem integrierten GeoGebra-Applet und mache dir Notizen. | Bearbeite alle Teilaufgaben mit dem integrierten GeoGebra-Applet und mache dir Notizen. | ||
Zeile 362: | Zeile 361: | ||
| 3= Merksatz}} | | 3= Merksatz}} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 6: Variable frei wählen | 2= | ||
Im Beispiel ''Lösbarkeit linearer Gleichungssysteme'' Teil c) wurde für die Variable <math> z </math> der Parameter <math> t </math> gesetzt. Somit hat sich für das lineare Gleichungssystem die Lösungsmenge <math> L= \{(2{-}t|2+2t|t) | t \in \mathbb{R}\} </math> ergeben. | Im Beispiel ''Lösbarkeit linearer Gleichungssysteme'' Teil c) wurde für die Variable <math> z </math> der Parameter <math> t </math> gesetzt. Somit hat sich für das lineare Gleichungssystem die Lösungsmenge <math> L= \{(2{-}t|2+2t|t) | t \in \mathbb{R}\} </math> ergeben. | ||
Zeile 410: | Zeile 409: | ||
| 3= Arbeitsmethode}} | | 3= Arbeitsmethode}} | ||
{{Box | 1=Aufgabe | {{Box | 1=Aufgabe 7: Anzahl der Lösungen erkennen | 2= | ||
Kreuze an, ob die jeweiligen Gleichungssysteme keine Lösung, unendlich viele Lösungen oder genau eine Lösungen besitzen und klicke abschließend auf den Haken im blauen Kreis, um deine Zuordnung zu überprüfen. | Kreuze an, ob die jeweiligen Gleichungssysteme keine Lösung, unendlich viele Lösungen oder genau eine Lösungen besitzen und klicke abschließend auf den Haken im blauen Kreis, um deine Zuordnung zu überprüfen. | ||
{{LearningApp|width=100%|height=500px|app=20311259}} | {{LearningApp|width=100%|height=500px|app=20311259}} | ||
| 3= Arbeitsmethode | Farbe={{Farbe|orange}} }} | | 3= Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 8: Parameter bestimmen | 2= | ||
Bestimme den Parameter <math> a \in \mathbb{R} </math> so, dass das lineare Gleichungssystem... | Bestimme den Parameter <math> a \in \mathbb{R} </math> so, dass das lineare Gleichungssystem... | ||
Zeile 464: | Zeile 463: | ||
| Merksatz}} | | Merksatz}} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 9: Ausnahmefälle bei der Lösung unter- und überbestimmter Gleichungssysteme | | ||
2= Im Merksatz oben wurde erklärt, dass unterbestimmte Gleichungssysteme im Allgemeinen keine eindeutige Lösung, also unendlich viele Lösungen besitzen und überbestimmte Gleichungssysteme im Allgemeinen keine Lösung besitzen. Für beides gibt es jedoch Ausnahmen. Diese Ausnahmen wollen wir uns in dieser Aufgabe anhand zweier Beispiele anschauen. | 2= Im Merksatz oben wurde erklärt, dass unterbestimmte Gleichungssysteme im Allgemeinen keine eindeutige Lösung, also unendlich viele Lösungen besitzen und überbestimmte Gleichungssysteme im Allgemeinen keine Lösung besitzen. Für beides gibt es jedoch Ausnahmen. Diese Ausnahmen wollen wir uns in dieser Aufgabe anhand zweier Beispiele anschauen. | ||
Zeile 647: | Zeile 646: | ||
| Hervorhebung1}} | | Hervorhebung1}} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 10: LGS lösen | 2= | ||
'''a)''' Ist das Gleichungssystem unterbestimmt oder überbestimmt? Begründe deine Entscheidung. | '''a)''' Ist das Gleichungssystem unterbestimmt oder überbestimmt? Begründe deine Entscheidung. | ||
Zeile 695: | Zeile 694: | ||
| 3= Arbeitsmethode| Farbe={{Farbe|orange}}}} | | 3= Arbeitsmethode| Farbe={{Farbe|orange}}}} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 11: LGS lösen | 2= | ||
'''a)''' Ist das Gleichungssystem unterbestimmt oder überbestimmt? Begründe deine Entscheidung. | '''a)''' Ist das Gleichungssystem unterbestimmt oder überbestimmt? Begründe deine Entscheidung. | ||
Zeile 752: | Zeile 751: | ||
| 3= Arbeitsmethode|Farbe={{Farbe|orange}}}} | | 3= Arbeitsmethode|Farbe={{Farbe|orange}}}} | ||
{{Box | 1=Aufgabe | {{Box | 1=Aufgabe 12: Zusammenfassung | 2= | ||
Fülle die Lücken richtig aus, indem du auf die Lücken klickst und die richtige Aussage aus der Liste auswählst. Klicke abschließend auf den Haken im blauen Kreis, um deine Lösung zu überprüfen. | Fülle die Lücken richtig aus, indem du auf die Lücken klickst und die richtige Aussage aus der Liste auswählst. Klicke abschließend auf den Haken im blauen Kreis, um deine Lösung zu überprüfen. | ||
Zeile 760: | Zeile 759: | ||
==Interpretation der Lösung eines Linearen Gleichungssystems== | ==Interpretation der Lösung eines Linearen Gleichungssystems== | ||
{{Box| 1= Aufgabe | {{Box| 1= Aufgabe 13: Ordne die Linearen Gleichungssysteme und Lösungsmengen bezüglich der Lage zweier Geraden zu. Klicke abschließend auf den Haken im blauen Kreis, um deine Zuordnung zu überprüfen |2={{LearningApp|width=100%|height=500px|app=20404725}}|3= Arbeitsmethode| Farbe={{Farbe|orange}} }} | ||
{{Lösung versteckt|Parallele Geraden besitzen keine, identische Geraden unendlich viele und sich schneidende Geraden genau eine Lösung| Tipp 1| Tipp ausblenden}} | {{Lösung versteckt|Parallele Geraden besitzen keine, identische Geraden unendlich viele und sich schneidende Geraden genau eine Lösung| Tipp 1| Tipp ausblenden}} | ||
{{Lösung versteckt|Ist eine Variable beim Lösen des LGS von einer anderen abhängig, ist eine Variable frei wählbar und somit existieren unendlich viele Lösungen| Tipp 2|Tipp ausblenden}} | {{Lösung versteckt|Ist eine Variable beim Lösen des LGS von einer anderen abhängig, ist eine Variable frei wählbar und somit existieren unendlich viele Lösungen| Tipp 2|Tipp ausblenden}} | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 14: Lösung interpretieren | 2= | ||
Die Lagebeziehung zweier Geraden wird untersucht. Die beiden Richtungsvektoren sind linear unabhängig. Im nächsten Schritt entstand folgendes LGS: | Die Lagebeziehung zweier Geraden wird untersucht. Die beiden Richtungsvektoren sind linear unabhängig. Im nächsten Schritt entstand folgendes LGS: | ||
Zeile 799: | Zeile 798: | ||
| 3= Arbeitsmethode}} | | 3= Arbeitsmethode}} | ||
{{Box| 1= Aufgabe | {{Box| 1= Aufgabe 15 | 2= Zwei Schüler*innen lösen dasselbe LGS. Sie erhalten die Lösungsmengen | ||
<math> L1=\{(2+r;1+r;3-r)\} </math> bzw. | <math> L1=\{(2+r;1+r;3-r)\} </math> bzw. | ||
<math> L2=\{(1-s;-s;4+s)\} </math> | <math> L2=\{(1-s;-s;4+s)\} </math> |
Version vom 3. Juni 2021, 23:42 Uhr
Wiederholung: Verschiedene Verfahren zum Lösen linearer Gleichungssysteme
Lineare Gleichungssysteme mit dem Gauß-Algorithmus lösen
Lösbarkeit linearer Gleichungssysteme
Unter- und überbestimmte Gleichungssysteme
Interpretation der Lösung eines Linearen Gleichungssystems