Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 408: | Zeile 408: | ||
{{Box | Merksatz: Über- und unterbestimmte Gleichungssysteme | | {{Box | Merksatz: Über- und unterbestimmte Gleichungssysteme | | ||
Ein Lineares Gleichungssystem heißt '''unterbestimmt''', wenn es mehr Variablen als Gleichungen enthält. Im Allgemeinen sind unterbestimmte Gleichungssysteme nicht eindeutig lösbar. Sie besitzen also unendlich viele Lösungen. | |||
Ein Lineares Gleichungssystem heißt '''überbestimmt''', wenn es mehr Gleichungen als Variablen enthält. Im Allgemeinen besitzen überbestimmte Gleichungssysteme keine Lösung. | Ein Lineares Gleichungssystem heißt '''überbestimmt''', wenn es mehr Gleichungen als Variablen enthält. Im Allgemeinen besitzen überbestimmte Gleichungssysteme keine Lösung. | ||
| Merksatz}} | | Merksatz}} | ||
{{Box | 1= Aufgabe 9 | {{Box | 1= Aufgabe 9: Ausnahmefälle bei der Lösung unter- und überbestimmter Gleichungssysteme | | ||
2= Im Merksatz oben wurde erklärt, dass | 2= Im Merksatz oben wurde erklärt, dass unterbestimmte Gleichungssysteme im Allgemeinen keine eindeutige Lösung, also unendlich viele Lösungen besitzen und überbestimmte Gleichungssysteme im Allgemeinen keine Lösung besitzen. Für beides gibt es jedoch Ausnahmen. Diese Ausnahmen wollen wir uns in dieser Aufgabe anhand zweier Beispiele anschauen. | ||
'''a)''' Betrachte das Lineare Gleichungssystem. Überlege dir mit der Erklärung aus dem Merksatz, ob es sich um ein über- oder unterbestimmtes Gleichungssystem handelt. | '''a)''' Betrachte das Lineare Gleichungssystem. Überlege dir mit der Erklärung aus dem Merksatz, ob es sich um ein über- oder unterbestimmtes Gleichungssystem handelt. | ||
Zeile 426: | Zeile 427: | ||
{{Lösung versteckt| Hierbei handelt es sich um ein überbestimmtes Gleichungssystem. |Lösung |Lösung ausblenden}} | {{Lösung versteckt| Hierbei handelt es sich um ein überbestimmtes Gleichungssystem. |Lösung |Lösung ausblenden}} | ||
'''b)''' Stimmt die folgende Aussage? | '''b)''' Stimmt die folgende Aussage? Begründe deine Entscheidung. | ||
<div style="background:LightGrey"> | <div style="background:LightGrey"> | ||
Zeile 434: | Zeile 435: | ||
{{Lösung versteckt| Die Gleichungen sind alle Vielfache voneinander. |Tipp|Tipp ausblenden}} | {{Lösung versteckt| Die Gleichungen sind alle Vielfache voneinander. |Tipp|Tipp ausblenden}} | ||
{{Lösung versteckt|Das Gleichungssystem hat unendlich viele Lösungen mit der Lösungsmenge <math> L= \{(t|1{-}t)| t \in \mathbb{R}\} </math>. Dies erkennt man auch direkt daran, dass die zweite und dritte Gleichung Vielfache der ersten Gleichung sind. Durch Multiplikation der ersten Gleichung mit <math> 2 </math> erhält man die zweite Gleichung, durch Multiplikation der ersten Gleichung mit <math> 4 </math> erhält man die dritte Gleichung. Somit sind alle drei Gleichungen äquivalent. Es reicht also, die Gleichung <math> x + y = 1 </math> zu betrachten. Umstellen der Gleichung nach <math> y </math> ergibt: | {{Lösung versteckt| | ||
Die Aussage stimmt. Das Gleichungssystem hat unendlich viele Lösungen mit der Lösungsmenge <math> L= \{(t|1{-}t)| t \in \mathbb{R}\} </math>. Dies erkennt man auch direkt daran, dass die zweite und dritte Gleichung Vielfache der ersten Gleichung sind. Durch Multiplikation der ersten Gleichung mit <math> 2 </math> erhält man die zweite Gleichung, durch Multiplikation der ersten Gleichung mit <math> 4 </math> erhält man die dritte Gleichung. Somit sind alle drei Gleichungen äquivalent. Es reicht also, die Gleichung <math> x + y = 1 </math> zu betrachten. Umstellen der Gleichung nach <math> y </math> ergibt: | |||
<math> y = 1 - x </math> | <math> y = 1 - x </math> | ||
Zeile 466: | Zeile 469: | ||
|Lösung |Lösung ausblenden}} | |Lösung |Lösung ausblenden}} | ||
'''c)''' Betrachte das Lineare Gleichungssystem. Überlege dir mit der Erklärung aus dem Merksatz, ob es sich um ein | '''c)''' Betrachte das Lineare Gleichungssystem. Überlege dir mit der Erklärung aus dem Merksatz, ob es sich um ein unter- oder überbestimmtes Gleichungssystem handelt. | ||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 473: | Zeile 476: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
'''d)''' Stimmt die folgende Aussage? | '''d)''' Stimmt die folgende Aussage? Begründe deine Entscheidung. | ||
<div style="background:LightGrey"> | <div style="background:LightGrey"> | ||
Zeile 479: | Zeile 482: | ||
</div> | </div> | ||
{{Lösung versteckt| Vergleiche die beiden Gleichungen des Gleichungssystems. Was ist gleich | {{Lösung versteckt| Vergleiche die beiden Gleichungen des Gleichungssystems. Was ist gleich? Was unterscheidet sich? |Tipp|Tipp ausblenden}} | ||
{{Lösung versteckt|Das Gleichungssystem hat keine Lösung, also die Lösungsmenge <math> L= \{\} </math>. Dies erkennt man direkt daran, dass bei beiden Gleichungen der Term auf der linken Seite gleich ist. Setzt man also beide Gleichungen mit dem Gleichsetzungsverfahren gleich, so ergibt sich <math> 1 = 2 </math>. Dies ist ein Widerspruch. | {{Lösung versteckt| | ||
Die Aussage stimmt. Das Gleichungssystem hat keine Lösung, also die Lösungsmenge <math> L= \{\} </math>. Dies erkennt man direkt daran, dass bei beiden Gleichungen der Term auf der linken Seite gleich ist. Setzt man also beide Gleichungen mit dem Gleichsetzungsverfahren gleich, so ergibt sich <math> 1 = 2 </math>. Dies ist ein Widerspruch. | |||
|Lösung |Lösung ausblenden}} | |Lösung |Lösung ausblenden}} | ||
Zeile 488: | Zeile 493: | ||
{{Box | Beispiel: Überbestimmtes Gleichungssystem | | {{Box | Beispiel: Überbestimmtes Gleichungssystem | | ||
Wie kann die Lösung des Gleichungssystems bestimmt werden? | |||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 494: | Zeile 501: | ||
x &&\; + \;&& 3y &&\; = \;&& 0 | x &&\; + \;&& 3y &&\; = \;&& 0 | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Zeile 537: | Zeile 540: | ||
|Lösungsweg |Lösungsweg ausblenden}} | |Lösungsweg |Lösungsweg ausblenden}} | ||
{{Box | Beispiel: | {{Lösung versteckt|<math> L= \{\} </math>|Lösung |Lösung ausblenden}} | ||
| Hervorhebung1}} | |||
{{Box | Beispiel: es Gleichungssystem | | |||
Wie kann die Lösung des Gleichungssystems bestimmt werden? | |||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 543: | Zeile 552: | ||
x &&\; - \;&& y &&\; + \;&& z &&\; = \;&& 2 | x &&\; - \;&& y &&\; + \;&& z &&\; = \;&& 2 | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Zeile 581: | Zeile 588: | ||
|Lösungsweg |Lösungsweg ausblenden}} | |Lösungsweg |Lösungsweg ausblenden}} | ||
{{Lösung versteckt|<math> L= \{(t|{-}1|1{-}t)| t \in \mathbb{R}\} </math>|Lösung |Lösung ausblenden}} | |||
| Hervorhebung1}} | | Hervorhebung1}} | ||
{{Box | 1= Aufgabe 10 | {{Box | 1= Aufgabe 10: weiterführende Aufgabe zu den Beispielen | 2= | ||
Das Gleichungssystem aus dem Beispiel '' | Das Gleichungssystem aus dem Beispiel ''es Gleichungssystem'' besitzt unendlich viele Lösungen. Bestimme eine mögliche konkrete Lösung für dieses Gleichungssystem. | ||
{{Lösung versteckt| <math> t </math> ist eine beliebige, also eine frei wählbare reelle Zahl. |Tipp|Tipp ausblenden}} | {{Lösung versteckt| <math> t </math> ist eine beliebige, also eine frei wählbare reelle Zahl. |Tipp|Tipp ausblenden}} | ||
Zeile 600: | Zeile 609: | ||
| 3=Arbeitsmethode | Farbe={{Farbe|orange}} }} | | 3=Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
{{Box | 1= Aufgabe 11 | {{Box | 1= Aufgabe 11: LGS lösen | 2= | ||
'''a)''' Ist das Gleichungssystem überbestimmt | '''a)''' Ist das Gleichungssystem oder überbestimmt? | ||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 609: | Zeile 618: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
{{Lösung versteckt|Das Gleichungssystem ist | {{Lösung versteckt|Das Gleichungssystem ist , da es mehr Variablen als Gleichungen besitzt. |Lösung |Lösung ausblenden}} | ||
'''b)''' Löse das Gleichungssystem mit dem Gauß-Algorithmus. Schreibe deinen Lösungsweg auf und gib anschließend die Lösungsmenge an. | '''b)''' Löse das Gleichungssystem mit dem Gauß-Algorithmus. Schreibe deinen Lösungsweg auf und gib anschließend die Lösungsmenge an. | ||
Zeile 647: | Zeile 656: | ||
|Lösungsweg |Lösungsweg ausblenden}} | |Lösungsweg |Lösungsweg ausblenden}} | ||
{{Box | 1= Aufgabe 12 | {{Box | 1= Aufgabe 12: LGS lösen | 2= | ||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 655: | Zeile 664: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
'''a)''' Ist das Gleichungssystem überbestimmt | '''a)''' Ist das Gleichungssystem oder überbestimmt? | ||
{{Lösung versteckt|Das Gleichungssystem ist überbestimmt, da es mehr Gleichungen als Variablen besitzt. |Lösung |Lösung ausblenden}} | {{Lösung versteckt|Das Gleichungssystem ist überbestimmt, da es mehr Gleichungen als Variablen besitzt. |Lösung |Lösung ausblenden}} | ||
Zeile 703: | Zeile 712: | ||
|Lösungsweg |Lösungsweg ausblenden}} | |Lösungsweg |Lösungsweg ausblenden}} | ||
{{Box | 1=Aufgabe 13 | {{Box | 1=Aufgabe 13: Zusammenfassung | 2= | ||
Fülle die Lücken richtig aus, indem du auf die Lücken klickst und die richtige Aussage aus der Liste auswählst. Klicke abschließend auf den Haken im blauen Kreis, um deine Lösung zu überprüfen. | Fülle die Lücken richtig aus, indem du auf die Lücken klickst und die richtige Aussage aus der Liste auswählst. Klicke abschließend auf den Haken im blauen Kreis, um deine Lösung zu überprüfen. | ||
Version vom 2. Juni 2021, 10:44 Uhr
Wiederholung: Verschiedene Verfahren zum Lösen linearer Gleichungssysteme
Lineare Gleichungssysteme mit dem Gauß-Algorithmus lösen
Lösbarkeit linearer Gleichungssysteme
Unter- und überbestimmte Gleichungssysteme
Interpretation der Lösung eines Linearen Gleichungssystems