Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 314: | Zeile 314: | ||
|Tipp anzeigen | |Tipp anzeigen | ||
|Tipp verbergen | |Tipp verbergen | ||
}} | |||
{{Box | |||
|Aufgabe 6: Besondere Geraden im Raum | |||
|Kreuze alle(!) richtigen Antworten an! | |||
{{LearningApp|width=100%|height=500px|app=p221zv0i321}} | |||
|Arbeitsmethode | |||
|Farbe={{Farbe|grün|dunkel}} | |||
}} | }} | ||
Zeile 321: | Zeile 332: | ||
{{Box | {{Box | ||
|Aufgabe | |Aufgabe 7: Spurpunkte einer Geraden | ||
|Berechne die Spurpunkte der Geraden <math>g</math>. | |Berechne die Spurpunkte der Geraden <math>g</math>. | ||
Zeile 333: | Zeile 344: | ||
|# Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>. | |# Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>. | ||
# Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = r</math>. Setze nun <math>r = 0</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{13}</math> zu erhalten: <math>\vec{S_{13}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix}</math> | # Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = r</math>. Setze nun <math>r = 0</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{13}</math> zu erhalten: <math>\vec{S_{13}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix}</math> | ||
# Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_1</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>. Hinweis (war nicht in der Aufgabe gefordert): Man erkennt, dass es sich um den selben Schnittpunkt der Gerade mit der <math>x_1x_2</math>-Ebene | # Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_1</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>. Hinweis (war nicht in der Aufgabe gefordert): Man erkennt, dass es sich um den selben Schnittpunkt handelt wie der Schnittpunkt der Gerade mit der <math>x_1x_2</math>-Ebene, also: <math>S_{12} = S_{23}</math>. | ||
|Lösung Aufgabe a) anzeigen | |Lösung Aufgabe a) anzeigen | ||
|Lösung Aufgabe a) verbergen | |Lösung Aufgabe a) verbergen | ||
Zeile 386: | Zeile 397: | ||
|3=Merksatz}} | |3=Merksatz}} | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 8: Lage erkennen|2=Löse das Quiz und mache dir deinen eigenen Lernzettel. | ||
{{LearningApp|app=19038875|width=100%|height=554px}} | {{LearningApp|app=19038875|width=100%|height=554px}} | ||
Zeile 392: | Zeile 403: | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 9: Lage zweier Geraden|2=Löse den Lückentext und mache dir deinen eigenen Lernzettel. | ||
{{LearningApp|app=19689096|width=100%|height=554px}}|Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | {{LearningApp|app=19689096|width=100%|height=554px}}|Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 10: Lage erkennen|2= Betrachte die folgenden Geraden <math>g</math> und <math>h</math>. Wie verlaufen die Geraden zueinander. Entscheide ohne Nutzung des GTR. | ||
'''a)''' <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R}</math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, r \in \mathbb{R} </math> | '''a)''' <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R}</math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, r \in \mathbb{R} </math> |
Version vom 1. Juni 2021, 10:42 Uhr
Geraden und ihre Darstellungsformen
Parameterdarstellung einer Geraden
Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, kannst du hier noch einmal nachvollziehen.
Du kannst aber auch eine Gerade aufstellen, die durch einen Punkt verläuft und parallel zu einer anderen Gerade oder zu einer der Koordinatenachsen ist.
Punktprobe
Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade oder daneben liegt, kannst du hier noch einmal nachschauen.
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:
Spurpunkte einer Geraden
Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, kannst du hier noch einmal nachvollziehen.
Falls du nicht mehr weißt, was die Koordinatenebenen sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:
Die -Ebene ist die Ebene, die von der - und -Achse aufgespannt wird (im Bild genannt). Entsprechendes gilt für die - (im Bild ) und -Ebene (im Bild ).
Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du die Punkte und anpassen, durch die die Gerade verlaufen soll. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:
Lagebeziehungen von Geraden
Parallele und identische Geraden