Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 96: | Zeile 96: | ||
Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen. | Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen. | ||
{{Box | Aufgabe 4: Abstand zum Schuldach | | {{Box | Aufgabe 4: Abstand zum Schuldach | | ||
Anton und Bianca fliegen jeweils eine Drohne über das Dach ihrer Schule. Antons Drohne schwebt an der Stelle <math>A(3|4|-1)</math> und Biancas Drohne schwebt an der Stelle <math>B(-1|7|4)</math>. | Anton und Bianca fliegen jeweils eine Drohne über das Dach ihrer Schule. Antons Drohne schwebt an der Stelle <math>A(3|4|-1)</math> und Biancas Drohne schwebt an der Stelle <math>B(-1|7|4)</math>. | ||
Zeile 101: | Zeile 102: | ||
[[File:Drone with GoPro digital camera mounted underneath - 22 April 2013.jpg| rechts | rahmenlos]] | [[File:Drone with GoPro digital camera mounted underneath - 22 April 2013.jpg| rechts | rahmenlos]] | ||
Zeile 106: | Zeile 108: | ||
Abstandsberechnung mit der Formel für den Abstand eines Punktes von einer Ebene: | Abstandsberechnung mit der Formel für den Abstand eines Punktes von einer Ebene: | ||
Der Normalenvektor der Ebene ist: <math>\vec{n}= \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math> | Der Normalenvektor der Ebene ist: <math>\vec{n}= \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math> | ||
Länge des Normalenvektors <math>\vec{n} </math> bestimmen: <math>|\vec{n}|=\sqrt{8^2+(-4)^2+(-1)^2}=\sqrt{64+16+1}=\sqrt{81}=9 </math> | Länge des Normalenvektors <math>\vec{n} </math> bestimmen: <math>|\vec{n}|=\sqrt{8^2+(-4)^2+(-1)^2}=\sqrt{64+16+1}=\sqrt{81}=9 </math> | ||
Es folgt: <math>\frac {|8\cdot x_1-4\cdot x_2-1\cdot x_3-5|}{9}</math>. | Es folgt: <math>\frac {|8\cdot x_1-4\cdot x_2-1\cdot x_3-5|}{9}</math>. | ||
Nun werden die Koordinaten von <math>A</math> eingesetzt: <math>\frac {|8\cdot3-4\cdot4-1\cdot(-1)-5|}{9}=\frac {|24-16+1-5|}{9}=\frac {4}{9}</math> | Nun werden die Koordinaten von <math>A</math> eingesetzt: <math>\frac {|8\cdot3-4\cdot4-1\cdot(-1)-5|}{9}=\frac {|24-16+1-5|}{9}=\frac {4}{9}</math> | ||
Die Koordinaten von <math>B</math> können in die selbe Formel eingesetzt werden: <math>\frac {|8\cdot(-1)-4\cdot7-1\cdot4-5|}{9}=\frac {|-8-28-4-5|}{9}=\frac {|-45|}{9}=5</math>. | Die Koordinaten von <math>B</math> können in die selbe Formel eingesetzt werden: <math>\frac {|8\cdot(-1)-4\cdot7-1\cdot4-5|}{9}=\frac {|-8-28-4-5|}{9}=\frac {|-45|}{9}=5</math>. | ||
Damit hat die Drohne von Anton einen Abstand von <math>\frac{ | |||
Damit hat die Drohne von Anton einen Abstand von <math>\frac{4}{9}</math>LE zum Schuldach und die Drohne von Bianca einen Abstand von <math>5</math>LE. Antons Drohne ist also näher zum Dach als Biancas Drohne. | |||
|2=Lösung mit der Formel anzeigen|3=Lösung verbergen}} | |2=Lösung mit der Formel anzeigen|3=Lösung verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Abstand von <math>A</math> zu <math>E</math>: | Abstand von <math>A</math> zu <math>E</math>: | ||
Zuerst wird die Geradengleichung der Lotgeraden <math>g_1</math> zu <math>E</math> durch <math>A</math> aufgestellt. | Zuerst wird die Geradengleichung der Lotgeraden <math>g_1</math> zu <math>E</math> durch <math>A</math> aufgestellt. | ||
Mit dem Ortsvektor von <math>A</math> als Stützvektor und dem Normalenvektor von <math>E</math> als Richtungsvektor ist <math> g_1: \vec{x}= \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}+ t \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math>. | Mit dem Ortsvektor von <math>A</math> als Stützvektor und dem Normalenvektor von <math>E</math> als Richtungsvektor ist <math> g_1: \vec{x}= \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}+ t \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math>. | ||
Wir bestimmen den Schnittpunkt von <math>g_1</math> mit <math>E</math>. Einsetzen von einem allgemeinen Punkt von <math>g_1</math> in <math>E</math> ergibt <math>8(3+8t)-4(4-4t)-(-1-t)=5</math>, also <math>t=-\frac{4}{81}</math>. Durch Einsetzen in die Geradengleichung <math> \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}- \frac{4}{81} \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix}</math> erhalten wir den Lotfußpunkt <math>L_1(3-\frac{32}{81}|4+\frac{16}{81}|-1+\frac{4}{81})</math>. | Wir bestimmen den Schnittpunkt von <math>g_1</math> mit <math>E</math>. Einsetzen von einem allgemeinen Punkt von <math>g_1</math> in <math>E</math> ergibt <math>8(3+8t)-4(4-4t)-(-1-t)=5</math>, also <math>t=-\frac{4}{81}</math>. Durch Einsetzen in die Geradengleichung <math> \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}- \frac{4}{81} \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix}</math> erhalten wir den Lotfußpunkt <math>L_1(3-\frac{32}{81}|4+\frac{16}{81}|-1+\frac{4}{81})</math>. | ||
Der Abstand zwischen <math>A</math> und <math>L_1</math> beträgt <math>\frac{4}{9}</math>LE wegen <math>|\vec{AL_1}|=\sqrt{(3-\frac{32}{81}-3)^2+(4+\frac{16}{81}-4)^2+(-1+\frac{4}{81}-(-1))^2}=\sqrt{\frac{16}{81}}=\frac{4}{9}</math>. | Der Abstand zwischen <math>A</math> und <math>L_1</math> beträgt <math>\frac{4}{9}</math>LE wegen <math>|\vec{AL_1}|=\sqrt{(3-\frac{32}{81}-3)^2+(4+\frac{16}{81}-4)^2+(-1+\frac{4}{81}-(-1))^2}=\sqrt{\frac{16}{81}}=\frac{4}{9}</math>. | ||
Abstand von <math>B</math> zu <math>E</math>: | Abstand von <math>B</math> zu <math>E</math>: | ||
Zuerst wird die Geradengleichung der Lotgeraden <math>g_2</math> zu <math>E</math> durch <math>B</math> aufgestellt. | Zuerst wird die Geradengleichung der Lotgeraden <math>g_2</math> zu <math>E</math> durch <math>B</math> aufgestellt. | ||
Mit dem Ortsvektor von <math>B</math> als Stützvektor und dem Normalenvektor von <math>E</math> als Richtungsvektor ist <math> g_2: \vec{x}= \begin{pmatrix} -1 \\ 7 \\ 4 \end{pmatrix}+ s \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math>. | Mit dem Ortsvektor von <math>B</math> als Stützvektor und dem Normalenvektor von <math>E</math> als Richtungsvektor ist <math> g_2: \vec{x}= \begin{pmatrix} -1 \\ 7 \\ 4 \end{pmatrix}+ s \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix} </math>. | ||
Wir bestimmen den Schnittpunkt von <math>g_2</math> mit <math>E</math>. Einsetzen von einem allgemeinen Punkt von <math>g_2</math> in <math>E</math> ergibt <math>8(-1+8s)-4(7-4s)-(4-s)=5</math>, also <math>s=\frac{5}{9}</math>. Durch Einsetzen in die Geradengleichung <math> \begin{pmatrix} -1 \\ 7 \\ 4 \end{pmatrix}+\frac{5}{9} \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix}</math> erhalten wir den Lotfußpunkt <math>L_2(-1+\frac{40}{9}|7-\frac{20}{9}|4-\frac{5}{9})</math>. | Wir bestimmen den Schnittpunkt von <math>g_2</math> mit <math>E</math>. Einsetzen von einem allgemeinen Punkt von <math>g_2</math> in <math>E</math> ergibt <math>8(-1+8s)-4(7-4s)-(4-s)=5</math>, also <math>s=\frac{5}{9}</math>. Durch Einsetzen in die Geradengleichung <math> \begin{pmatrix} -1 \\ 7 \\ 4 \end{pmatrix}+\frac{5}{9} \cdot \begin{pmatrix} 8 \\ -4 \\ -1 \end{pmatrix}</math> erhalten wir den Lotfußpunkt <math>L_2(-1+\frac{40}{9}|7-\frac{20}{9}|4-\frac{5}{9})</math>. | ||
Der Abstand zwischen <math>B</math> und <math>L_2</math> beträgt <math>5</math>LE wegen <math>|\vec{BL_2}|=\sqrt{(-1+\frac{40}{9}-(-1))^2+(7-\frac{20}{9}-7)^2+(4-\frac{5}{9}-4)^2}=\sqrt{\frac{2025}{81}}=5</math>. | Der Abstand zwischen <math>B</math> und <math>L_2</math> beträgt <math>5</math>LE wegen <math>|\vec{BL_2}|=\sqrt{(-1+\frac{40}{9}-(-1))^2+(7-\frac{20}{9}-7)^2+(4-\frac{5}{9}-4)^2}=\sqrt{\frac{2025}{81}}=5</math>. | ||
Damit hat die Drohne von Anton einen Abstand von <math>\frac{ | |||
Damit hat die Drohne von Anton einen Abstand von <math>\frac{4}{9}</math>LE zum Schuldach und die Drohne von Bianca einen Abstand von <math>5</math>LE. Antons Drohne ist also näher zum Dach als Biancas Drohne. | |||
|2=Lösung mit dem Lotfußpunktverfahren anzeigen|3=Lösung verbergen}} | |2=Lösung mit dem Lotfußpunktverfahren anzeigen|3=Lösung verbergen}} | ||
{{Lösung versteckt|1=Der Abstand der Drohne von Anton zum Dach beträgt <math>\frac{4}{9}</math>LE und der Abstand von Biancas Drohne zum Dach beträgt <math>5</math>LE. Damit ist der Abstand von Antons Drohne geringer.|2=Lösung anzeigen|3=Lösung verbergen}} | |||
Version vom 1. Juni 2021, 09:36 Uhr
Einstieg
Je nachdem, bei welchem Abstandsproblem du hier noch Schwierigkeiten hattest oder was du einfach noch üben willst, kannst du dir den jeweiligen Abschnitt dieses Lernpfadkapitels anschauen.
Abstand eines Punktes von einer Ebene
Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen.
Abstand eines Punktes von einer Geraden
Abstand zweier windschiefer Geraden